
EdgStr:
Automating Client-Cloud
to Client-Edge-Cloud Transformation

Principle Engineer
Software Engineering Team

Samsung Research

Kijin An

Professor
CS Department

Virginia Tech

Eli Tilevich

Presentation Outline

● Motivation

○ State of distributed software and vision

○ Example application

● Approach for automating transformation to Client-'Edge'-Cloud

● Reference Implementation: EdgStr

● Evaluation

● Conclusions

2

Client-Cloud Architecture (2-tier)

● Cloud-Client predominant

○ Cloud Infrastructure: Powerful

○ Network: Fast

● Conventional 2-tier no longer
meets performance
and resource utilization
requirements of modern
apps

3

Client
Program

Network

Cloud
Programgood

Client-Cloud Architecture (2-tier)

● Cloud-Client

○ Cloud Infrastructure: Powerful

○ Network:Fast

● What if:

○ Network: Slow & unreliable

○ Sensor Data: Massive (“sensor
deluge”)

○ 🡪 Increased Latency

4

Client
Program

Network

Cloud
Programgood

↙ poor Network
Sensor Data
Deluge
↓

● Client-Cloud program (/predict, detect objects in the cloud)

5

fast

HTTP/1.1 Content-t:..
data:[boxes:…,names:…]

Client
Program

slow
Dog

Dog

result
ROIs & Labels

Req Hdrs
Payload:
data:[255,
216,255,…]

Cloud
Program

Galaxy S24 Ultra or iPhone 15 Pro
can capture a photo of 12MBytes

Edge Net Cloud Net

Sensor Data
Deluge!

Motivating Example
(firebase-objdet)

● Client-Cloud program

6

HTTP/1.1 Content-t:..
data:[boxes:…,names:…]

Client
Program

Edge Net

Dog

Dog

result
ROIs & Labels

Cloud Net

Req Hdrs
Payload:
data:[255,
216,255,…]

Cloud
Program

Galaxy S24 Ultra or iPhone 15 Pro
can capture a photo of 12MBytes

Cloud
Program

Cloud
Program

Dog

Dog

RTT across different/same continents
are different from
 :An Order of magnitude between them!

fast slow

[Installed Cloud Programs differently on Heroku
platform]

Motivating Example
(firebase-objdet)

Transforming 2-tier into 3-tier architecture

● Edge-based processing benefits

7

Client1

Cloud
Server

Client2

Client3
Client4

Edge
Network
(Good)

Cloud
Network
(Limited)

Edge
Network
(Good)

2-tier architecture

Transforming 2-tier into 3-tier architecture

● Benefit from edge-based processing

● We understand the benefits, but how to automate the transformation?

8

(Background)Client1

Cloud
Server

E
D

G
E

1
E

D
G

E
2

Client2

Client3
Client4

3-tier architecture: Service in “Good Network”

Edge
Network
(Good)

Cloud
Network
(Limited)

Client1

Cloud
Server

Client2

Client3
Client4

Edge
Network
(Good)

Cloud
Network
(Limited)

Edge
Network
(Good)

“Replicas” of Cloud program

2-tier architecture

Approach Overview

● Replicate a cloud-based service on edge devices
● Select the portion functionality to replicate that improves performance
● Provide eventual consistency by relying on CRDT
● Load-balance to a cluster of edge devices for scalability and throughput

9

Edge Processing via Tailed Proxy Pattern

● Proxy Pattern: Client makes request to Proxy (edge replicas)

10

client:
Client

service1()
…
serviceN()

cloud:
RealSubject

Subject
service1…N()

Edge Processing via Tailed Proxy Pattern

● Proxy Pattern: Client makes request to Proxy (edge replicas)

11

service1…N()

client:
Client

cloud:
RealSubject

Subject

edge:
ProxyOfRealSubject

Edge Processing via Tailed Proxy Pattern

● Proxy Pattern: Client makes request to Proxy (edge replicas)

12

service1…N()

client:
Client

service1()
…
serviceN()

cloud:
RealSubject

synchronizes “States”
(background)

Subject

edge:
ProxyOfRealSubject

Edge Processing via Tailed Proxy Pattern

● Proxy Pattern: Client makes request to Proxy (edge replicas)

13

relaxed consistency:
synchronized in a background process without
interfering with main functionality

(traffic)
WAN Network

(traffic)
Edge Network

service1…N()

client:
Client

service1()
…
serviceN()

cloud:
RealSubject

synchronizes “States”
(background)

Subject

edge:
ProxyOfRealSubject

Edge Processing via Tailed Proxy Pattern

● Proxy Pattern: Client makes request to Proxy (edge replicas)

14

client:
Client

edge:
ProxyOfRealSubject

cloud:
RealSubject

synchronizes “States”
(background)

Subject
service1…N()

relaxed consistency:
synchronized in a background
process without interfering
with main processing

Program Analysis &
Transformation:
How to identify and extract
required subject
functionalities in Cloud
program?
: carefully choosing to benefit
from edge based processing!

service1()
…
serviceN()

EdgStr: Automated Transformation
Identify and extract required subject functionalities in Cloud program

● Identify Subject s1, s2,…sN from by capturing HTTP traffic

15

Send
REQUEST

Get
RESPONSE

Unmarshaling
client-input:pN

Marshaling
server-return:rN

Server
Code

Get
REQ

Send
RES

HTTP
Traffic

(Client-side)

1. Identify Subject: Decode {client-parameter, server-return} 🡪 SN(pN, rN)

(Server-side)

EdgStr: Automated Transformation
Identify and extract required subject functionalities in Cloud program

● Extracting “functionality” from Cloud program:

16

Send
REQUEST

Get
RESPONSE

Unmarshaling
client-input:pN

Marshaling
server-return:rN

Server
Code

Get
REQ

Send
RES

HTTP
Traffics

(Client-side)

1. Identify Subject: Decode {client-parameter, server-return} 🡪 SN(pN, rN)
2. Extract functionality: Analyze SN from Cloud Program based on pN and rN

(Server-side)

EdgStr: Overall Process

● Dynamic and Static Analysis for Cloud Program

17

Client-Cloud app

Server
JS Code

Server

Client

② Searching all
dependent code

for the
functionality

Dynamic
Analysis: Jalangi2

Static Analysis: z3
constraints solver

①Instrument
HTTP traffic &

Identifying
Subjects

Entry/Exit
 Points

Taking Snapshot
for cloud program’s
states

Equivalent
Client-Edge-Cloud

EdgStr: Overall Process

● Dynamic and Static Analysis for Cloud Program

18

Client-Cloud app

Server
JS Code

Server

Client

② Searching all
dependent code

for the
functionality

Dynamic
Analysis: Jalangi2

Static Analysis: z3
constraints solver

①Instrument
HTTP traffic &

Identifying
Subjects

Entry/Exit
 Points

Taking Snapshot
for cloud program’s
states

Equivalent
Client-Edge-Cloud

EdgStr: Overall Process

● Dynamic and Static Analysis for Cloud Program

19

Equivalent
Client-
Edge-
Cloud

Client-Cloud app

Server
JS Code

Server

Client

② Searching all
dependent code

for the
functionality

Dynamic
Analysis: Jalangi2

Static Analysis: z3
constraints solver

①Instrument
HTTP traffic &

Identifying
Subjects

Entry/Exit
 Points

Taking Snapshot
for cloud program’s
states

CRDT templates

States are synchronized: Between Cloud and Edge
Replicas
● Eventually Consistency Sync. with CRDT for read or write operations across

edge replicas and original cloud

20

Cloud

Client1

Client2

REQs RESs

Cloud

Edge1

Edge2

Client1

Client2

(b
ac

kg
ro

un
d)

*

REQs RESs

edge_state2

cloud_state*
edge_state1

Original
Client-Cloud app

Transformed
Cloud-Edge-Client

(Edge Net traffic)

(WAN traffic)

(Edge Net traffic)

Evaluation

● 7 open-source distributed apps (42

remote services)

● Edge Node Setup: RPI-3s and RPI-4s

● RQ1. Correctness

● RQ2. Performance

● RQ3. Efficiency

(comparison with related works)

21

Evaluation (RQ1. Correctness)

● 42/42 was correctly transformed

○ Given (p
1
 , ...p

n
) sent to the original service OS and the

replicated service RS, check if Ros == Rrs

22

Evaluation (RQ2: Throughput)
● Deluge Index (∆Net/∆Tput)

○ The volumes of transmitted data
over WAN almost did NOT affect
EdStr’s throughput

23

Data TRX [Kbytes]

● Benefit of Edge-based execution in subjects with

○ Relatively heavy upload/download

○ Low computational loads

D
el

u
ge

 In
d

ex

Evaluation (RQ2. Energy Consumption in Client Device)

● The longer it takes to execute a cloud-based, the more client device will
end up consuming

24

We used Trepn Profiler to measure the consumed energy in Android Device

Evaluation (RQ2. Scalability and Elasticity of
Edge-based processing)
● Built a cluster using 4 RPIs: distributing clients’ requests to available edge replicas

● Load balancer shuts on or off the RPIs based on service utilization (clustering on/off)

25

2 RPI-3s and 2 PRI-4s

Active replicas gradually changed from 4 to 1, reducing
overall consumed energy by as much as 12.96%

Evaluation (RQ3. effectiveness of EdgStr’s sync and
proxying strategy)
● Cross-ISA offloading systems [25,26,27] inefficiently syncs all states of cloud program

● Proxy Caching [28,29] benefits in read-mostly services

● Batching [31,32] only reduces WAN traffics through request aggregation

26

Sync Overhead and WAN traffic analysis

Cross-ISA vs EdgStr: EdgStr minimizes the amount of synchronization traffic over WAN
by synchronizing only the modifiable parts of the replicated service state.

Comparing the Latency of proxy strategies

Conclusion and Q/A

● We described and evaluated EdgStr’s advanced program
analysis and transformation techniques

○ from 2-tier client-cloud to 3-tier client-edge-cloud

● Applying EdgStr to representative distributed mobile apps
introduces the performance benefits of edge processing, without
the high costs of manual program transformation

27

Applicability & Limitation for EdgStr

• Subject: Cloud Services (targeting important domain in Node.js)

• RESTful HTTP protocols

• Executions: HTTP Request/Response, GET/POST/...

• What else? Socket.IO, gRPC, ...

• ☞ Cloud Server State Replications

• DataBase with SQL, Files, and global variables

• What else? (Future work) framework specific Data Structures or ML Models

• Federated Learning for replicating ML Models across cloud and edges

