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Presentation Outline

o Motivation
o State of distributed software and vision
o Example application
o Approach for automating transformation to Client-'Edge'-Cloud
o Reference Implementation: EdgStr
o Evaluation

e Conclusions



Client-Cloud Architecture (2-tier)
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Client-Cloud Architecture (2-tier)

o Cloud-Client

- Cloud Infrastructure: Powerful

- Network:Fast

« What if:

- Network: Slow & unreliable

- Sensor Data: Massive (“sensor
deluge”)
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Motivating Example
(firebase-objdet)

o Client-Cloud program (/predict, detect objects in the cloud)

result ' HTTP/1.1 Content-t:..
ROIs & Labels ' data: [boxes:.., names:...]

__________________________________________
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Deluge!
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. Payload:

Client ' data:[255, |
Program 1 216,255,..1

Galaxy S24 Ultra or iPhone 15 Pro
can capture a photo of 12MBytes



Motivating Example
(firebase-objdet)

e Client-Cloud program

(
result ' HTTP/1.1 Content-t:..

ROIs & Labels data: [boxes:..,names:..]

__________________________________________
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Program
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Client ' data:[255, |
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platform]

Galaxy S24 Ultra or iPhone 15 Pro
§ can capture a photo of 12MBytes



Transforming 2-tier into 3-tier architecture

o Edge-based processing benefits

2-tier architecture
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Transforming 2-tier into 3-tier architecture

o Benefit from edge-based processing

2-tier architecture 3-tier architecture: Service in “Good Network”
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“Replicas” of Cloud program

o« We understand the benefits, but how to automate the transformation?



Approach Overview

o Replicate a cloud-based service on edge devices
o Select the portion functionality to replicate that improves performance
o Provide eventual consistency by relying on CRDT
o Load-balance to a cluster of edge devices for scalability and throughput



Edge Processing via Tailed Proxy Pattern

o Proxy Pattern: Client makes request to Proxy (edge replicas)

. Subject |
L service1...N() J
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Edge Processing via Tailed Proxy Pattern

o Proxy Pattern: Client makes request to Proxy (edge replicas)

' Subject |
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Edge Processing via Tailed Proxy Pattern

o Proxy Pattern: Client makes request to Proxy (edge replicas)

' Subject |
L service1...N() J
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synchronizes “States”
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Edge Processing via Tailed Proxy Pattern

o Proxy Pattern: Client makes request to Proxy (edge replicas)

' Subject |
L service1...N() J

A

service1() Fo---------- Tt R bbb bbbl
client: |~ . ‘edge: N cloud:
client |®™®N0 |proxyOfRealSubject ||| RealSubiject

synchronizes “States”

- . }* (background)

(traffic) (traffic)

Edge Network WAN Network

relaxed consistency:
synchronized in a background process without
interfering with main functionality




Edge Processing via Tailed Proxy Pattern

o Proxy Pattern: Client makes request to Proxy (edge replicas)

Program Analysis &
| Subject = .
Transformation:
service1...N() J : :
—4— How to identify and extract
service() {======--=-----o - Smmmme oo | required subject
client: | . edge: | N cloud: functionalities in Cloud
Client serv'ceN()\ ProxyOfRealSubject ||| jReaISubjecJ program?
- synchronizes “states” L J : carefully choosing to benefit
\ ) N L (background) from edge based processing!

relaxed consistency:

synchronized in a background

process without interfering

with main processing 14




EdgStr: Automated Transformation
|dentify and extract required subject functionalities in Cloud program

o Identify Subject s, s,,...s\ from by capturing HTTP traffic

(Client-side) (Server-side)
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1. Identify Subject: Decode {client-parameter, server-return} o S (p,, r,)




EdgStr: Automated Transformation
|dentify and extract required subject functionalities in Cloud program

« Extracting “functionality” from Cloud program:

(Client-side) (Server-side)
~
Send Get ( Unmarshaling\
oo RESSEST }_ R \client-input:pw' -
=0
Marshaling Code

Z4
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| RESPONSE RES
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1. Identify Subject: Decode {client-parameter, server-return} o S (p,, r,)
Pn Iy 2. Extract functionality: Analyze S from Cloud Program based on p, and r,, 16




EdgStr: Overall Process

« Dynamic and Static Analysis for Cloud Program

Dynamic Static Analysis: z3
Analysis: Jalangi2  constraints solver

Entry/Exit .
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EdgStr: Overall Process

« Dynamic and Static Analysis for Cloud Program

Dynamic Static Analysis: z3
Analysis: Jalangi2  constraints solver

Entry/Exit .
@instrument |5 @ searching all

HTTP traffic & ——gp»! dependent code Equivalent

Server
JS Code

Ildentifying for the )
_ Subjects functionality Client-
Client Edge-
ing Snapshot Cloud
for cloud program’s
Client-Cloud app states CRDT templates
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States are synchronized: Between Cloud and Edge

Replicas

o Eventually Consistency Sync. with CRDT for read or write operations across
edge replicas and original cloud

: RES
Client] REQs RESs Client1 REQs S

—_—_—— e

L 2
L 2
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(Edge Net traffic)

Client2

Original Transformed
Client-Cloud app Cloud-Edge-Client
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Evaluation

e 7 open-source distributed apps (42
remote services)

o Edge Node Setup: RPI-3s and RPI-4s

e RQ1. Correctness
e RQ2. Performance
o RQ3. Efficiency

(comparison with related works)

Components Specification
Cloud Infra i7-7700
(Desktop) (3.6GHzX8)
Edge Node Cortex—A53
(RPI-3) (1.4GHzX4)
Edge Node Cortex—A72
(RPI-4) (1.5GHzX4)
Mobile Dev | Snapdragon
(Android) -616
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Evaluation (RQ1. Correctness)

o 42/42 was correctly transformed

o Given (p,, ...p_) sent to the original service OS and the

replicated service RS, check if Ros == Rrs

22



Evaluation (RQ2: Throughput)

e Benefit of Edge-based execution in subjects with

o Relatively heavy upload/download

o Low computational loads

Throughput[Req/s]
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(f) RecipeBook

e Deluge Index (ANet/ATput)

o The volumes of transmitted data
over WAN almost did NOT affect
EdStr’s throughput

Deluge Index
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Evaluation (RQ2. Energy Consumption in Client Device)

o The longer it takes to execute a cloud-based, the more client device will

end up consuming

lonic-2-realty-rest Med-chem-rules
25 = Cloud = Cloud

[Watt]

11s 56s 13s 61s

We used Trepn Profiler to measure the consumed energy in Android Device

RecipeBook

2.5
»Cloud =Edge

1.5

0.5

10.5s 57s
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Evaluation (RQ2. Scalability and Elasticity of
Edge-based processing)

e Built a cluster using 4 RPIs: distributing clients’ requests to available edge replicas
2 RPI-3s and 2 PRI-4s

e Load balancer shuts on or off the RPIs based on service utilization (clustering on/off)

Latency [msec] (averaged) Consumed Energy [J] (averaged)

1000 .-+ -+ single-active (a RPI-4) ..-"' 130
.o+pe e all-active (4-RPIs)  +
. Iy 110
2 = C|ustering (on/off).
] .
Q
270100 90
9
20 ««+ps . all-active (4-RPls)
== Clustering (on/off)
10 50
0 50 100 150 200 250 300 0 50 100 150 200 250 300

Requests Per Second (RPS) Requests Per Second (RPS)

Active replicas gradually changed from 4 to 1, reducing
overall consumed energy by as much as 12.96%
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Evaluation (RQ3. effectiveness of EdgStr’s sync and
proxying strategy)

e Cross-ISA offloading systems [25,26,27] inefficiently syncs all states of cloud program
e Proxy Caching [28,29] benefits in read-mostly services

e Batching [31,32] only reduces WAN traffics through request aggregation

[Kbytes/req] Cross-ISA Original EdgeFy's [msec] . celine Batching Caching EdgeFy
(Syncall) WAN WAN | | |
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5 I
Sync Overhead and WAN traffic analysis Comparing the Latency of proxy strategies

Cross-ISA vs EdgStr: EdgStr minimizes the amount of synchronization traffic over WAN

by synchronizing only the modifiable parts of the replicated service state. 26



Conclusion and Q/A

« We described and evaluated EdgStr's advanced program
analysis and transformation techniques
- from 2-tier client-cloud to 3-tier client-edge-cloud

« Applying EdgStr to representative distributed mobile apps
iIntroduces the performance benefits of edge processing, without
the high costs of manual program transformation

27



Applicability & Limitation for EdgStr

e Subject: Cloud Services (targeting important domain in Node.js)

e RESTful HTTP protocols
e Executions: HTTP Request/Response, GET/POST/...
 What else? Socket.lO, gRPC, ...
* 15~ Cloud Server State Replications
* DataBase with SQL, Files, and global variables
 What else? (Future work) framework specific Data Structures or ML Models

* Federated Learning for replicating ML Models across cloud and edges



