EdgStr.
Automating Client-Cloud
to Client-Edge-Cloud Transformation

Principle Engineer Professor
Software Engineering Team CS _De.pjartment & Z
Samsung Research Virginia Tech VIRGINIA TECH.

Kijin An Eli Tilevich

Presentation Outline

o Motivation
o State of distributed software and vision
o Example application
o Approach for automating transformation to Client-'Edge'-Cloud
o Reference Implementation: EdgStr
o Evaluation

e Conclusions

Client-Cloud Architecture (2-tier)

o Cloud-Client predominant

- Cloud Infrastructure: Powerful

- Network: Fast Cloud

Program

good

« Conventional 2-tier no longer
meets performa.rfce | _ Network
and resource utilization [ohent J

] rogram
requirements of modern

dpPPpsS

Client-Cloud Architecture (2-tier)

o Cloud-Client

- Cloud Infrastructure: Powerful

- Network:Fast

« What if:

- Network: Slow & unreliable

- Sensor Data: Massive (“sensor
deluge”)

- [Increased Latency

Sensor Data

[

Client
Program

]

Deluge

Network

v poor Networ

Cloud
Program

N\

¢

J/

Motivating Example
(firebase-objdet)

o Client-Cloud program (/predict, detect objects in the cloud)

result ' HTTP/1.1 Content-t:..
ROIs & Labels ' data: [boxes:.., names:...]

__

Edge Net Cloud Net

Cloud
Program

Sensor Data
Deluge!

>

slow

. Payload:

Client ' data:[255, |
Program 1 216,255,..1

Galaxy S24 Ultra or iPhone 15 Pro
can capture a photo of 12MBytes

Motivating Example
(firebase-objdet)

e Client-Cloud program

(
result ' HTTP/1.1 Content-t:..

ROIs & Labels data: [boxes:..,names:..]

__

Edge Net Cloud Net

Cloud
Program

>

slow

. Payload:

Client ' data:[255, |
Program 1 216,255,..1

b
¥

RTT across different/same continents
are different from
:An Order of magnitude between them!

= | Program Program

-

va -

[Installed Cloud Programs differently on Heroku
platform]

Galaxy S24 Ultra or iPhone 15 Pro
§ can capture a photo of 12MBytes

Transforming 2-tier into 3-tier architecture

o Edge-based processing benefits

2-tier architecture

Client1 < >)
Client2«e—; P

Netvgsrk Network CIOUd
Cllent3< (Good) (Limited) > Server
Client4 = >

Transforming 2-tier into 3-tier architecture

o Benefit from edge-based processing

2-tier architecture 3-tier architecture: Service in “Good Network”
. (N . 4 ~
Cl|ent1< - C“ent1<—> g (Bactkground)
. ®
Client2<e—g P Client2gige | ™ [Gioud
Network Network Cloud Network Network Cloud
. (Good) (Limited) . (Good) (Limited) S erver
Client3= »| Server Cllent3<_> ;Dn) 0 ’
Client4 = > Clientd q¢—»| O
_) g _J

“Replicas” of Cloud program

o« We understand the benefits, but how to automate the transformation?

Approach Overview

o Replicate a cloud-based service on edge devices
o Select the portion functionality to replicate that improves performance
o Provide eventual consistency by relying on CRDT
o Load-balance to a cluster of edge devices for scalability and throughput

Edge Processing via Tailed Proxy Pattern

o Proxy Pattern: Client makes request to Proxy (edge replicas)

. Subject |
L service1...N() J

LS
client: service1() (Cloud:l
Client _| RealSubject

serviceN()

—

Edge Processing via Tailed Proxy Pattern

o Proxy Pattern: Client makes request to Proxy (edge replicas)

' Subject |
L service1...N() J

A
y \ 1
client: ‘edge:)| (Cloud: w
Client ProxyOfRealSubject RealSubject

o L »

Edge Processing via Tailed Proxy Pattern

o Proxy Pattern: Client makes request to Proxy (edge replicas)

' Subject |
L service1...N() J

\
service1() Sietetetetaieietetetgiataiets EEEEEE R
yd \ 1
client: |- . \ (edge:) cloud:
Client |°¢™V'°¢ ()\ ProxyOfRealSubject ||| RealSubiect
synchronizes “States”

- S /* (background)

Edge Processing via Tailed Proxy Pattern

o Proxy Pattern: Client makes request to Proxy (edge replicas)

' Subject |
L service1...N() J

A

service1() Fo---------- Tt R bbb bbbl
client: |~ . ‘edge: N cloud:
client |®™®N0 |proxyOfRealSubject ||| RealSubiject

synchronizes “States”

- . }* (background)

(traffic) (traffic)

Edge Network WAN Network

relaxed consistency:
synchronized in a background process without
interfering with main functionality

Edge Processing via Tailed Proxy Pattern

o Proxy Pattern: Client makes request to Proxy (edge replicas)

Program Analysis &
| Subject = .
Transformation:
service1...N() J : :
—4— How to identify and extract
service() {======--=-----o - Smmmme oo | required subject
client: | . edge: | N cloud: functionalities in Cloud
Client serv'ceN()\ ProxyOfRealSubject ||| jReaISubjecJ program?
- synchronizes “states” L J : carefully choosing to benefit
\) N L (background) from edge based processing!

relaxed consistency:

synchronized in a background

process without interfering

with main processing 14

EdgStr: Automated Transformation
|dentify and extract required subject functionalities in Cloud program

o Identify Subject s, s,,...s\ from by capturing HTTP traffic

(Client-side) (Server-side)
~N
Send G (Unmarshaling\
fooe) RESSEST }_ - = L Client-input:p,i' _

HTTP
@ Traffic rver
Marshaling Code %
‘ [Get 14_ H_ erver-return:r,,
_RESPONSE RES
N r B
S11 |P1 14 ’

1. Identify Subject: Decode {client-parameter, server-return} o S (p,, r,)

EdgStr: Automated Transformation
|dentify and extract required subject functionalities in Cloud program

« Extracting “functionality” from Cloud program:

(Client-side) (Server-side)
~
Send Get (Unmarshaling\
oo RESSEST }_ R \client-input:pw' -
=0
Marshaling Code

Z4

‘ [Get 14_ H_ Eerver-return:rJ
| RESPONSE RES
- N e ™
S11 P13

1. Identify Subject: Decode {client-parameter, server-return} o S (p,, r,)
Pn Iy 2. Extract functionality: Analyze S from Cloud Program based on p, and r,, 16

EdgStr: Overall Process

« Dynamic and Static Analysis for Cloud Program

Dynamic Static Analysis: z3
Analysis: Jalangi2 constraints solver

Entry/Exit .
@instrument |5 @ searching all

HTTP traffic & f——i dependent code . Equwalent
ldentifying for the _> CllEﬂt-EdgE-C'OUd

Subjects functionality

ing Snapshot
for cloud program’s

Client-Cloud app States

Server
JS Code

Client

17

= T ——— T
ExtractedStmts (s,, V var Viar) < % Vinsiar: TN, Vtiar i P

EdgStr: Overall Processsiunt pepes,, s,) A Marshal(s,, vy, Vi)

Mar

A (ﬂStmt_Dep(srl ,stmt,) A UnMarshal(sy, vynmar, Vg,))

« Dynamic and Static Analysis for Cloud Program

A
~

Dynamic Static Analysis: z3
Analysis: Jalangi2 constraints solver

Entry/Exit .
@instrument |5 @ searching all

HTTP traffic & f——i dependent code _ Equwalent
ldentifying for the _> Cllent-Edge-CIoud

Subjects functionality

ing Snapshot
for cloud program’s

Client-Cloud app States

Server
JS Code

Client

18

EdgStr: Overall Process

« Dynamic and Static Analysis for Cloud Program

Dynamic Static Analysis: z3
Analysis: Jalangi2 constraints solver

Entry/Exit .
@instrument |5 @ searching all

HTTP traffic & ——gp»! dependent code Equivalent

Server
JS Code

Ildentifying for the)
_ Subjects functionality Client-
Client Edge-
ing Snapshot Cloud
for cloud program’s
Client-Cloud app states CRDT templates

19

States are synchronized: Between Cloud and Edge

Replicas

o Eventually Consistency Sync. with CRDT for read or write operations across
edge replicas and original cloud

: RES
Client] REQs RESs Client1 REQs S

—_—_—— e

L 2
L 2
‘A

(Edge Net traffic)

Client2

Original Transformed
Client-Cloud app Cloud-Edge-Client

20

Evaluation

e 7 open-source distributed apps (42
remote services)

o Edge Node Setup: RPI-3s and RPI-4s

e RQ1. Correctness
e RQ2. Performance
o RQ3. Efficiency

(comparison with related works)

Components Specification
Cloud Infra i7-7700
(Desktop) (3.6GHzX8)
Edge Node Cortex—A53
(RPI-3) (1.4GHzX4)
Edge Node Cortex—A72
(RPI-4) (1.5GHzX4)
Mobile Dev | Snapdragon
(Android) -616

21

Evaluation (RQ1. Correctness)

o 42/42 was correctly transformed

o Given (p,, ...p_) sent to the original service OS and the

replicated service RS, check if Ros == Rrs

22

Evaluation (RQ2: Throughput)

e Benefit of Edge-based execution in subjects with

o Relatively heavy upload/download

o Low computational loads

Throughput[Req/s]

O Cloud
o= o= «= EdgStr
O O
O
o A S .
O

2.8 2.1 1.4 0.7 0
WAN Speed [MB/s]

(a) f-objdet

Throughput[Req/s]

O Cloud
- == EdgStr

5 4 3 2 1 0

WAN Speed [MB/s]

(d) ionic2-realty-rest

1000 Throughput[Reqg/s]

100 O O
O Cloud DD
10 - = = EdgStr
__________ =

1

1.5 1.2 09 0.6 0.3 0
WAN Speed [MB/s]

(b) mnist-rest
556 Throughput[Req/s]
0O Cloud
----- EdgStr
100 9
O O O
10 O
O
1 e E
6 4 2 0

WAN Speed [MB/s]

1000

100

10

1

100

10

(e) Bookworm

Throughput[Req/s]

= O
O
————————— —f
O Cloud
=-===EdgStr

0.8 0.6 0.4 0.2 0
WAN Speed [MB/s]

100cC

100

10

1

(¢) med-chemrrules

Throughput[Req/s]
O O 0

- —— — — e e o
O

O

O
O Cloud

=== EdgStr

5 4 3 2 1 0
WAN Speed [MB/s]

1000

100

10

1

(f) RecipeBook

e Deluge Index (ANet/ATput)

o The volumes of transmitted data
over WAN almost did NOT affect
EdStr’s throughput

Deluge Index

1800
1600
1400
1200
1000
800
600
400
200

-200 0

500 1000 1500 2000 2500

Data TRX [Kbytes]

23

Evaluation (RQ2. Energy Consumption in Client Device)

o The longer it takes to execute a cloud-based, the more client device will

end up consuming

lonic-2-realty-rest Med-chem-rules
25 = Cloud = Cloud

[Watt]

11s 56s 13s 61s

We used Trepn Profiler to measure the consumed energy in Android Device

RecipeBook

2.5
»Cloud =Edge

1.5

0.5

10.5s 57s

24

Evaluation (RQ2. Scalability and Elasticity of
Edge-based processing)

e Built a cluster using 4 RPIs: distributing clients’ requests to available edge replicas
2 RPI-3s and 2 PRI-4s

e Load balancer shuts on or off the RPIs based on service utilization (clustering on/off)

Latency [msec] (averaged) Consumed Energy [J] (averaged)

1000 .-+ -+ single-active (a RPI-4) ..-"' 130
.o+pe e all-active (4-RPIs) +
. Iy 110
2 = C|ustering (on/off).
] .
Q
270100 90
9
20 ««+ps . all-active (4-RPls)
== Clustering (on/off)
10 50
0 50 100 150 200 250 300 0 50 100 150 200 250 300

Requests Per Second (RPS) Requests Per Second (RPS)

Active replicas gradually changed from 4 to 1, reducing
overall consumed energy by as much as 12.96%

25

Evaluation (RQ3. effectiveness of EdgStr’s sync and
proxying strategy)

e Cross-ISA offloading systems [25,26,27] inefficiently syncs all states of cloud program
e Proxy Caching [28,29] benefits in read-mostly services

e Batching [31,32] only reduces WAN traffics through request aggregation

[Kbytes/req] Cross-ISA Original EdgeFy's [msec] . celine Batching Caching EdgeFy
(Syncall) WAN WAN | | |
14000
100000 TI0ED
| 750 12000 -
o CF%” 10000 -
1000 - 193 8192
100 - I 114 8000 - 7523
1201 6000 - 7| |
10 - XT 3451 70 L4955
1 4 4000 - 4716 | 3976
0.1 - 2000 - g
5 I
Sync Overhead and WAN traffic analysis Comparing the Latency of proxy strategies

Cross-ISA vs EdgStr: EdgStr minimizes the amount of synchronization traffic over WAN

by synchronizing only the modifiable parts of the replicated service state. 26

Conclusion and Q/A

« We described and evaluated EdgStr's advanced program
analysis and transformation techniques
- from 2-tier client-cloud to 3-tier client-edge-cloud

« Applying EdgStr to representative distributed mobile apps
iIntroduces the performance benefits of edge processing, without
the high costs of manual program transformation

27

Applicability & Limitation for EdgStr

e Subject: Cloud Services (targeting important domain in Node.js)

e RESTful HTTP protocols
e Executions: HTTP Request/Response, GET/POST/...
 What else? Socket.lO, gRPC, ...
* 15~ Cloud Server State Replications
* DataBase with SQL, Files, and global variables
 What else? (Future work) framework specific Data Structures or ML Models

* Federated Learning for replicating ML Models across cloud and edges

