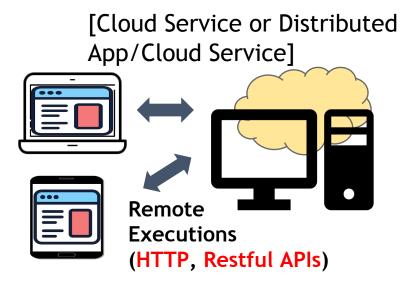
PhD Dissertation & Backgrounds

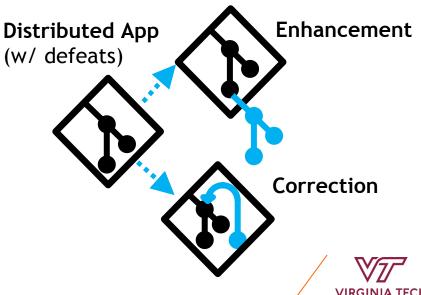
VIRGINIA TECH DEP. OF COMPUTER SCIENCE PHD (2021.5)

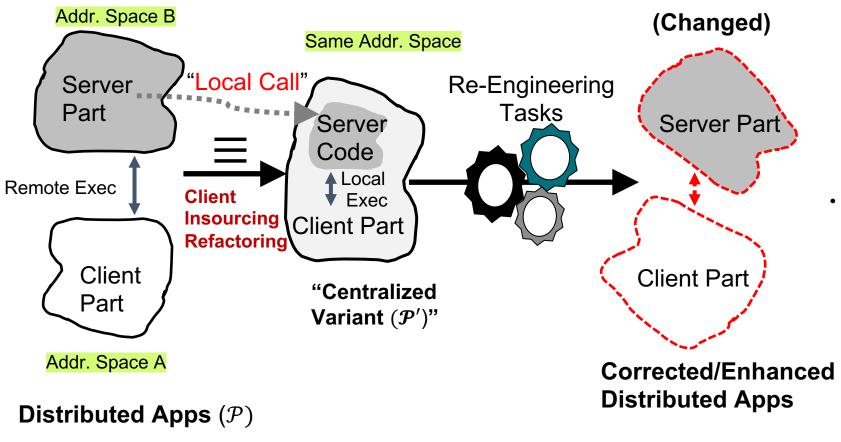

KIJIN AN

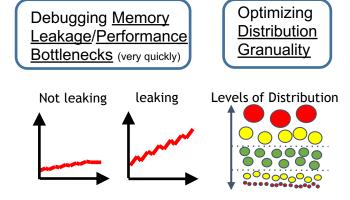
https://kjproj84.github.io

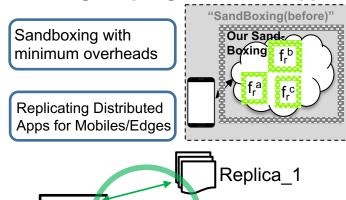


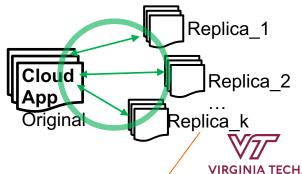
Dissertation Contributions


- Advisor: Eli Tilevich
- My Research Topic:
 - Software Engineering,
 - Distributed Systems (Web),
 - Computer Networking


- New "Refactoring": "Client Insourcing"
 - Creating a <u>Centralized Variant</u> (P') for the Distributed App/Cloud Service (P)
- Value and Utility of "Client Insourcing"
 - "Pinpointing" Inefficiency of Distributed Programs and "Assisting" Programmers for their changes
 - Applying state-of-the-art techniques from Software
 Engineering to address problems in Distributed Apps

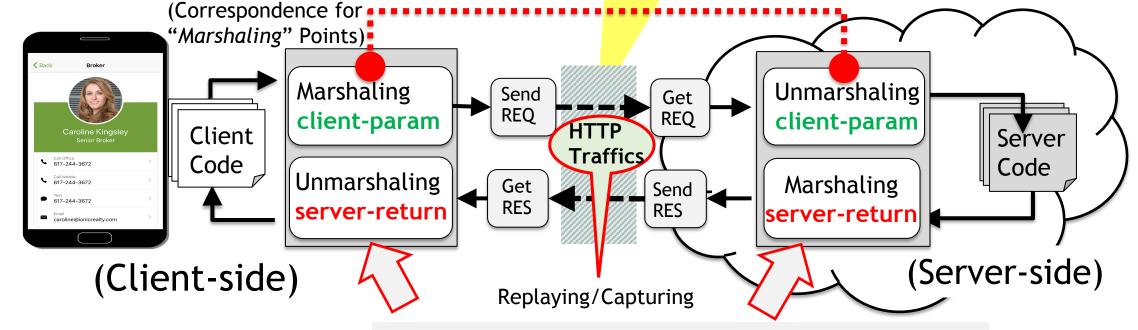

[Re-engineering]


Client Insourcing Refactoring



Correcting Distributed Apps

Enhancing/Adapting Distributed Apps

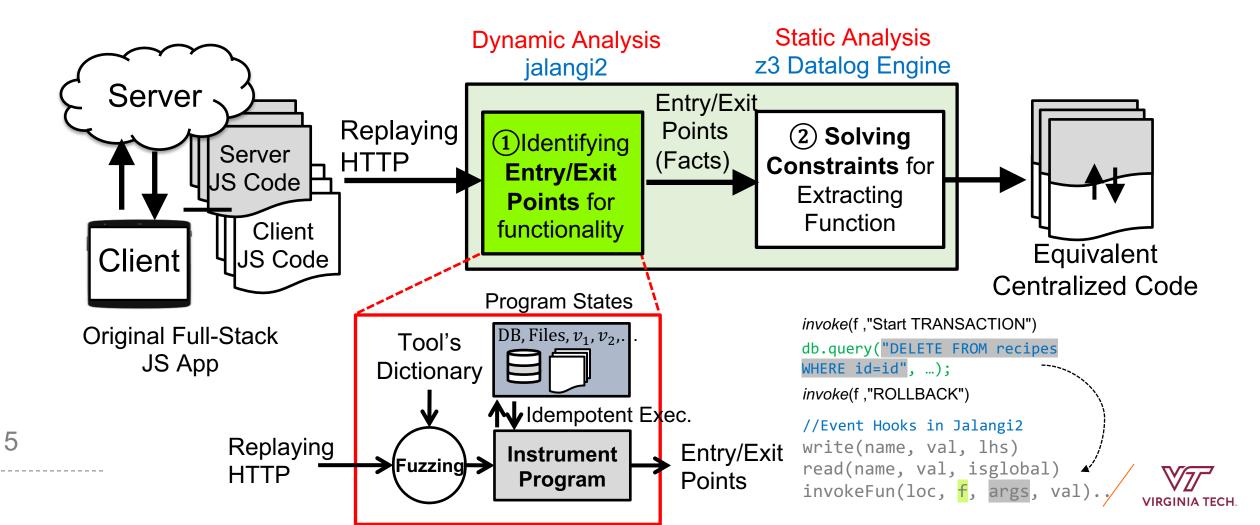

Client Insourcing Refactoring [www 2020]

```
1) HTTP Request From Client

DELETE
/properties/favorite
HOST ..
[{"id":1,"city":..}]

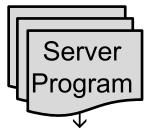
2) HTTP Response From Server

HTTP/1.1 200 OK
Content-t: json
Content-Len:
([{"id":2,"city"...]})
```



- 1. Decode {client-parameter, server-return}
- 2. Instrument code parts that RWs these values

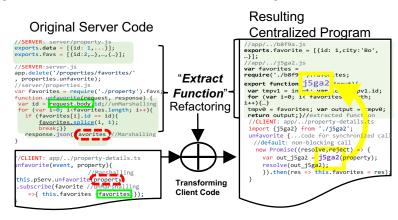
Client Insourcing Refactoring [WWW 2020]


Fuzzing HTTP records, Idempotent Executions

Client Insourcing Refactoring [WWW 2020]

- Extracting Function: Searching all dependent JS code in Entry/Exit points
- Extending Declarative approach for Program Analysis (z3py, Datalog Engine)
 - JavaScript: GATEKEEPER [Security'09]: Point-to-Analysis, JSDep [FSE'15]:
 Dependency Analysis

;;Generating Facts

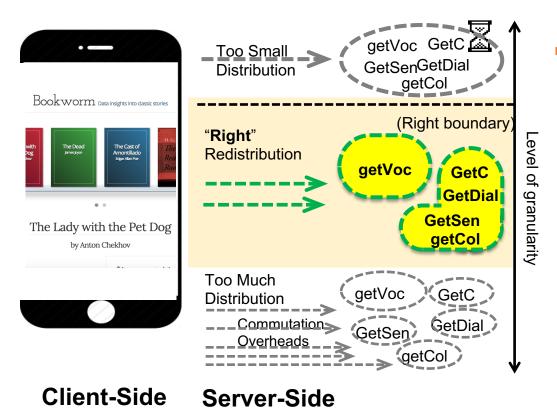


Write(s_1, v_a) Read(s_2, v_b) Write(s_2, v_b)

 $Ref(s_c, v_c, V_1)$ $Ref(s_d, v_d, V_2)$;;Rules for Client Insourcing Refactoring

```
\begin{split} \textbf{DataDep}(s_1, stmt_2) &\leftarrow \textbf{Read}(s_1, v_1) \land \textbf{Write}(s_2, v_1) \\ \text{;;} \textit{JS-Dep, GATEKEEPER} \\ \textbf{UnMar}(s_1, v_{unMar}, V_{unMar}^{u_{id}}) \\ &\leftarrow \textbf{Write}(s_1, v_{unMar}) \land \textbf{Ref}(v_{unMar}, V_{unMar}^{u_{id}}) \\ \textbf{Marshal}(s_1, v_{Mar}, V_{Mar}^{u_{id}}) \\ &\leftarrow \textbf{Write}(s_1, v_{Mar}) \land \textbf{Ref}(v_{Mar}, V_{Mar}^{u_{id}}) \\ \textbf{ExecutedStmts}(s_n, V_{unMar}^{u_{id}}, V_{Mar}^{u_{id}}) \\ &\leftarrow \left( \textbf{DataDep}(s_n, s_1) \land \textbf{Marshal}(s_1, v_{Mar}, V_{Mar}^{u_{id}}) \right) \land \\ &\cdot \left( \neg \textbf{DataDep}(s_n, s_2) \land \textbf{UnMar}(s_1, v_{unMar}, V_{unMar}^{u_{id}}) \right) \end{split}
```

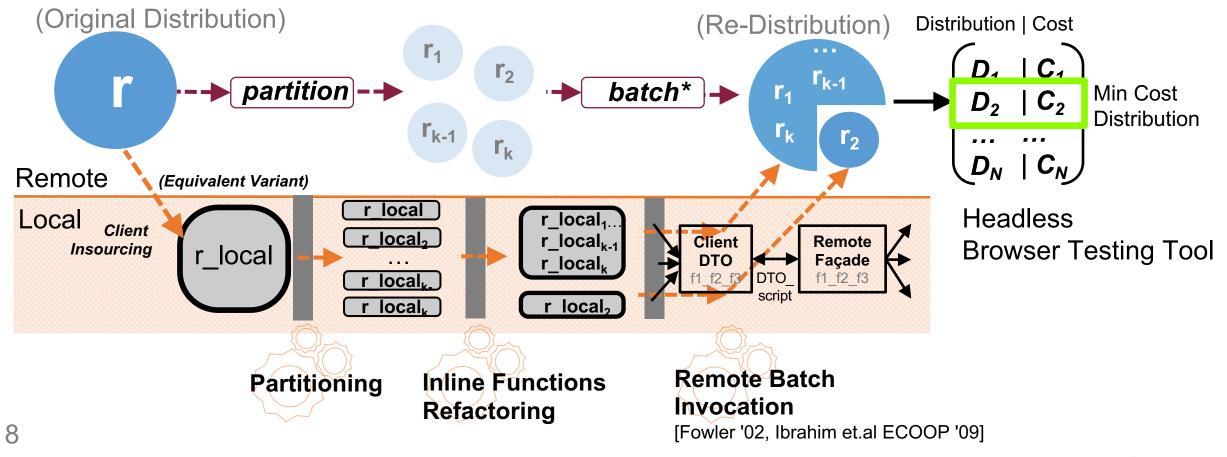
;;z3 Datalog Engine Query ExectedStmts for specific HTTP method {Client Param, Server Return}



Original Client Code

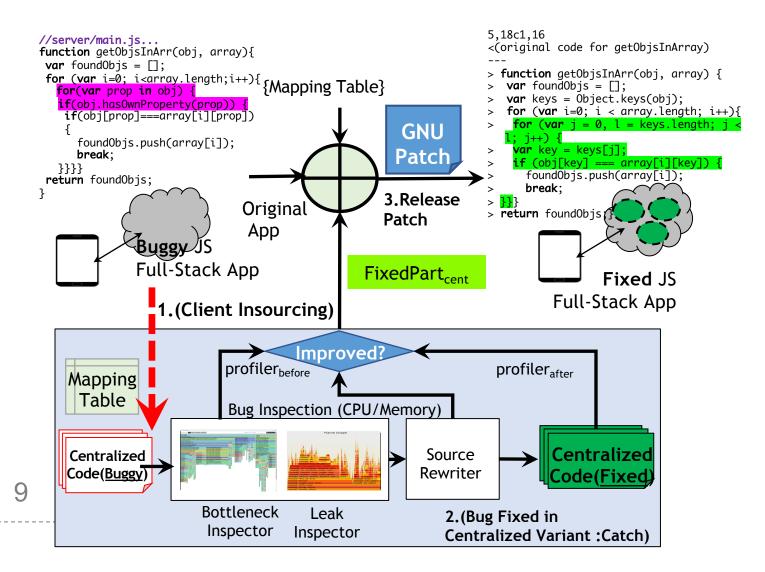
Application 1: Optimizing Cloud Services [SANER 2020] Restructuring Distribution

- Correcting ill-conceived Distributions
 - Ex) Nano-service anti pattern

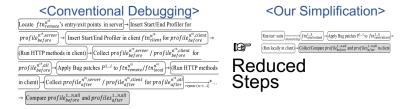


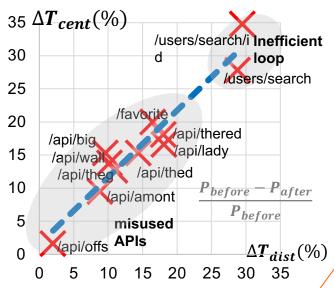
(/api/ladydog)

- Determine which functional distribution would minimize the cost of distributions
 - $C_{Dist_Exec}(\mathbf{r}) = \alpha \cdot latency(\mathbf{r}) + (1-\alpha) \cdot \Sigma resource(\mathbf{r})$
- Large Distribution Space: Our Tool automates!
 - Ex) 394 × 4139 ~= 1.6 × 10⁶ ULOCs



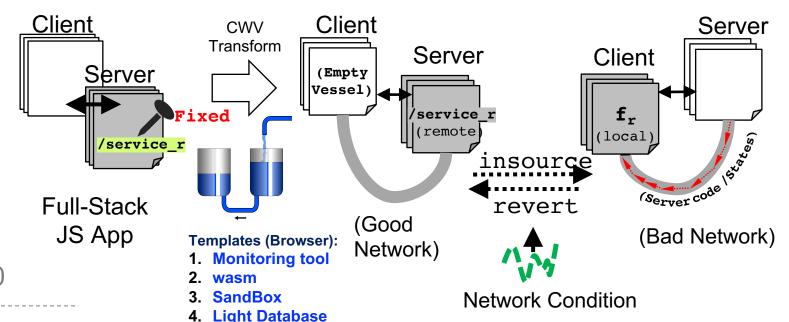
Application 1: Optimizing Cloud Services [SANER 2020] Restructuring Distribution

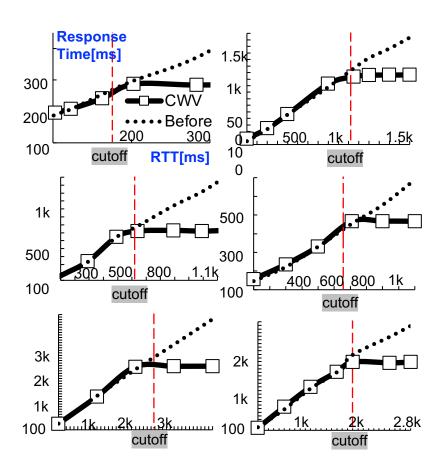




Application 2: Bug Fixes [ICWE 2019]

- Fixing Bugs in Centralized Variants and Generating Patches
- 90% Reduced Time to execute Debugging Task

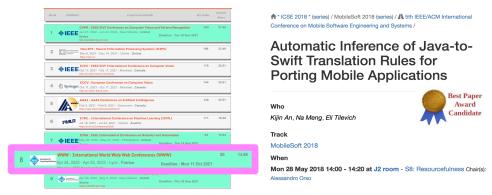




Application 3: Communicating Web Vessels (CWV)

Best Paper Award \(\frac{\text{Y}}{\text{E}} \) [ICWE 2021]

- Design and Execution Time Mismatch Client/Server Arch.
- Client <u>Insource</u> or <u>Revert</u> {Code_{Server}, State} based on Exec Conditions
- Automated Program Transformation for Adaptive Arch.

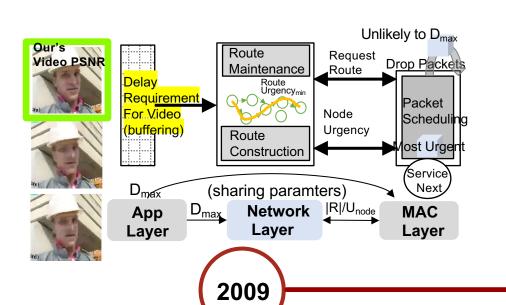

VIDGINIA TECH

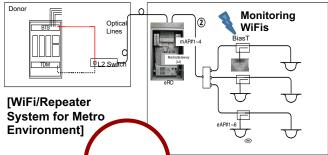
Publications & Honors in PhD

(full list: https://kjproj84.github.io/publications)

No.	Paper	Conference	Area	
1.	Client Insourcing Refactoring	WWW 2020 (19%, 217/1129, Top-tier)	System (Web)	1 st Author/2
2.	D-Goldilocks	SANER 2020 (21%, 42/199)	Software Engineering	1 st Author/2
3.	Catch&Release (Debugging)	ICWE 2019 (25%, 26/106)	System (Web)	1 st Author/2
4.	Comm Web Vessels	ICWE 2021 (17%, 22/128, Best Paper ∑)	System (Web)	1 st Author/2
5.	EdgeFy: Edge-based framework	Submitted	System (Middleware)	1 st Author/2
6.	[Appendix] Project1: Differencing Cross-platform Apps	MobileSoft 2018 (Nominated for Best Paper)	Software Engineering	1 st Author/3
7.	[Appendix] Project2: Distributing	GPCE 2018	Software Engineering	2 nd Author/3
8.	Embedded Apps for Trusted Exec.	Journal of Com. Lang. (Nominated for Best Paper)	Software Engineering	2 nd Author/3

- Main work presented in WWW 2020 (Top-tier)
- One Best Paper Award & Two Best Paper Nominations


- Two Doctoral Symposium Papers in WWW 2020 and ICWE 2019
- Two Spotlights from CS@VT


.

Before PhD Program: 1. "Computer Networking" 2. "Cloud-based Distributed Systems"

[WiFi/VoIP System for Business Solution]

Scale ↓/Fault Tolerant Distributed System [] {Who/ Where/

Industry #2

2012 Industry #1

Value Creating University

MS: Computer Networking (2 years)

- MS Thesis: A Cross-layer Scheme for Video Data Transmission
- Routing Protocols for Ad hoc Networking: AODV, DSR
- MAC Scheduler: WLAN or Zigbee
- ICC 2009 (Conf), ACM/Springer Wireless Network 2013 (Journal)

(Network) System **Software Engineer**

(3 years 4 months)

- Developing/Optimizing Base Station's MAC Protocols
- WiFi/Repeater System: Remote Management tool for Metro (TR-069)
- **Developing Business Functions for** WiFi/VoiP System (Asterisk, SIP/RTP)

2015

(Top Korean National Lab) **Software Engineer/Researcher** (2 years 10 months)

- **Cloud-based Distributed System** for a Robot Service
- Scale/Fault Tolerant for Sensor Units x N
- Web-based Service **Scheduler**

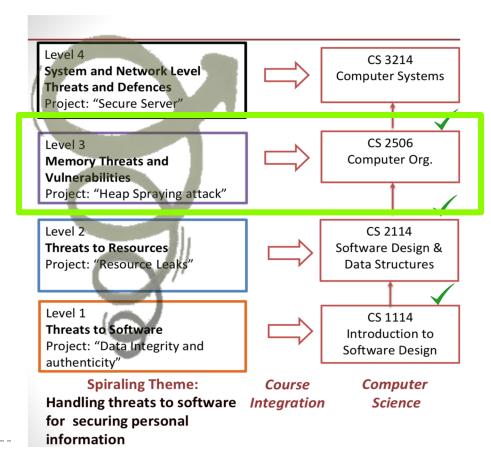
VIRGINIA TECH Beginning my

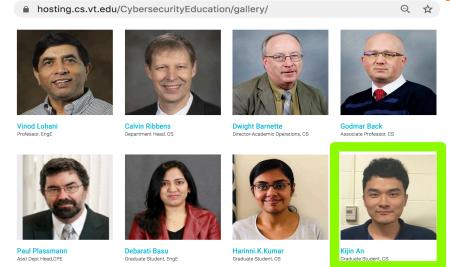
Sensor Units X N

PhD Program (2015.8~)

Appendix

- Other Projects
- System Design Experience




Appendix: Understanding Heap Spraying Attacks

User Study (Pre/Post Survey): IRB, 540 undergrads for 3 Semesters (see more detail in https://kjproj84.github.io/teaching)

 NSF-funded project for increasing CyberSecurity-related education in CS and ECE core courses at Virginia Tech

I developed the Level 3: Understanding Heap Spraying Attacks

Very Good Feedback from Students

"This assignment was very challenging, but a lot of fun too!"

45
40
35
30
25
20
15
10
0 10 20 30 40 50 60 70 80 90 100

Full Grades

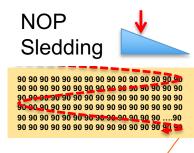
Students' Achievements

VIRGINIA TECH

Appendix: Understanding Heap Spraying Attacks

User Study (Pre/Post Survey): IRB, 540 undergrads for 3 Semesters (see more detail in https://kjproj84.github.io/teaching)

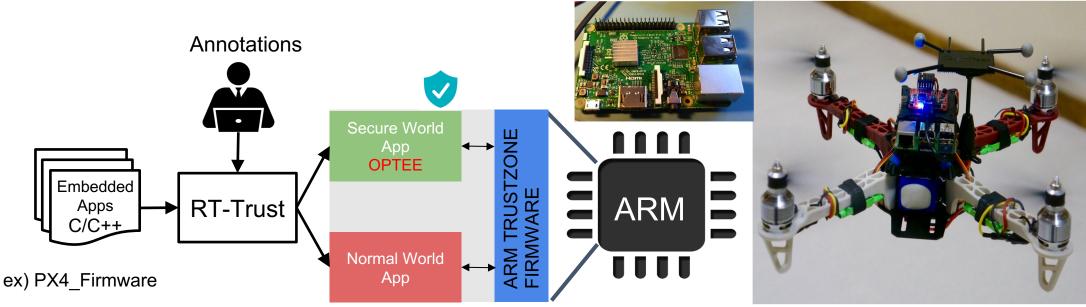
- Next Level of "Attack Lab"
- Systems: Victim Server, Grader:Executing and Evaluating Programs
- Extension of JavaScript Engine: V8


3. Submitting JS Code to Attack Server

1. Crafting Assembly Code for a system call

```
./sample: file format elf64-x86-64
Disassembly of section .text:
0000000000400078 <start>: "Payload"
          48 c7 c0 01 00 00 00 mov $0x1,%rax
400078:
          48 c7 c7 01 00 00 00 mov $0x1, %rdi
40007f:
          48 8d 35 19 00 00 00 lea 0x19(%rip)...
400086:
          48 c7 c2 0e 00 00 00 mov $0xe, %rdx
40008d:
          Of 05 syscall
400094:
          48 c7 c0 3c 00 00 00 00 mov $0x3c, %rax
400096:
          48 c7 c7 00 00 00 mov $0x0,%rdi
40009d:
4000a4:
          Of O5 syscall
```

2. Heap Spraying with JS Code



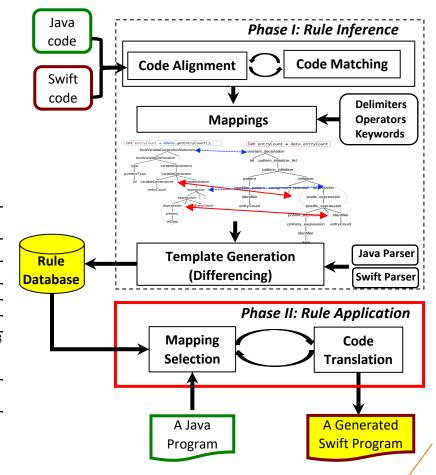
Appendix:

Refactoring Embedded Apps for Trusted Execution

[GPCE 2018], Best Paper Nomination at [COLA 2020]

- Programmers: Annotating CPI portions
- Partitioning C/C++ code into the <u>regular</u> and <u>trusted</u> parts
 - LLVM/Clang based Analysis/Refactoring, OPTEE (SGX in [COLA 2020])

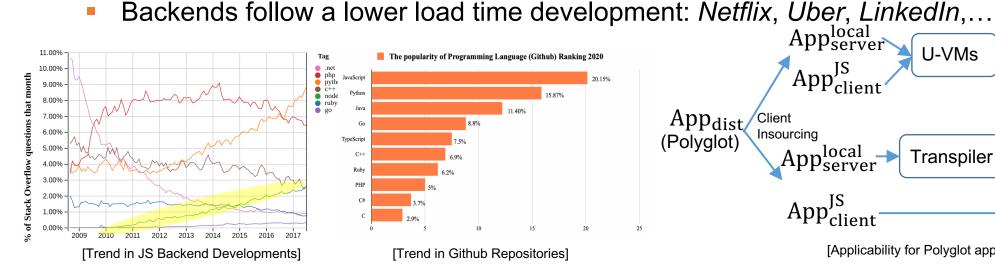
Appendix:

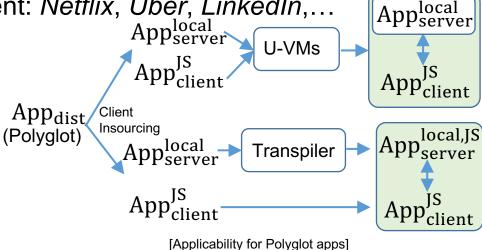

Learning Translating Rules/APIs from Cross-platform Apps

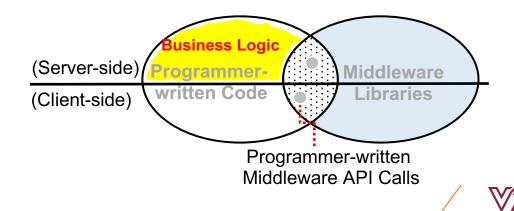
Best Paper Nomination at [MobileSoft 2018]

```
//PieChart.java
1 public class PieChart extends PieChartBase<PieData>
{...
2 private void calcAngles() { ...
3 int entryCount = mData.getEntryCount();
4 int cnt = 0;
5 for(int i = 0; i < mData.getDataSetCount(); i++){
6 IPieDataSet set = mData.get(i);
7 ...}}}</pre>
```

```
//PieChartView.swift
public class PieChartView: PieChartViewBase
{...
    private func calcAngles() { ...
    let entryCount = data.entryCount
    var cnt = 0
    for i in 0 ..< data.dataSetCount {
        let set = data[i]
        ...}}}</pre>
```


No.	Java	Swift	Java template	Swift template
	Syntax type	Syntax type		
1	typeDeclaration	class_decl	public class \$p10 extends \$p11 {}	public class \$p10: \$p11{}
2	classBodyDecl	function_decl	private void \$p20() {}	private func \$p20() {}
3	localVarDeclStmt	cnst_decl	\$p30 \$p31 = \$p32;	let p31 = p32
4	expression	expression	\$p33.getEntryCount()	\$p33.entryCount
5	localVarDeclStmt	var_decl	\$p40 \$p41 = \$p42;	var \$p41 = \$p42
6	statement	for_in_stat	for(p50 p51 = p52; p51 < p53; p51++)	for \$p51 in \$p52< \$p53
7	expression	expression	{}	{}
	·		\$p54.getDataSetCount()	\$p54.dataSetCount
8	statement	cnst_decl	\$p60 \$p61 = \$p62;	let \$p61 = \$p62
9	expression	expression	\$p63.get(\$p64)	\$p63[\$p64]




Appendix: Applicability of Client Insourcing

Subject: Full-Stack JavaScript apps (Node.js): Popular in Backend and Open Source

- **RESTful HTTP Protocols**
- **Insourcing Business (Application) Logic only**
 - What else? Failure/Exception handling Logics
- **Server State Isolations/Replications**
 - Database with **SQL**, **Files**, and **global variables**

