
PhD Dissertation &
Backgrounds

V I R G I N I A T E C H
D E P . O F C O M P U T E R S C I E N C E
P H D (2 0 2 1 . 5)

KIJIN AN
https://kjproj84.github.io

https://kjproj84.github.io/

§ Advisor: Eli Tilevich
§ My Research Topic:

§ Software Engineering,
§ Distributed Systems (Web),
§ Computer Networking

§ New “Refactoring”: “Client Insourcing”
§ Creating a Centralized Variant (𝓟!) for the

Distributed App/Cloud Service (𝓟)

§ Value and Utility of “Client Insourcing”
§ “Pinpointing” Inefficiency of Distributed Programs and

“Assisting” Programmers for their changes
§ Applying state-of-the-art techniques from Software

Engineering to address problems in Distributed Apps2

Remote
Executions
(HTTP, Restful APIs)

Distributed App
(w/ defeats)

Enhancement

Correction

Dissertation Contributions

Dr. Tilevich Dr. Smaragdakis

[Cloud Service or Distributed
App/Cloud Service]

[Re-engineering]

“Centralized
Variant (𝓟′)”

≡
Client Part

3

Server
Part

Client
Part

Distributed Apps (𝒫)

(Changed)

Re-Engineering
Tasks Server Part

Client Part

Corrected/Enhanced
Distributed Apps

Remote Exec

Addr. Space B

Addr. Space A

Same Addr. Space

Client Insourcing Refactoring

“Local Call”

Local
Exec

Server
Code

3

Client
Insourcing
Refactoring

leakingNot leaking

Debugging Memory
Leakage/Performance
Bottlenecks (very quickly)

• Correcting Distributed Apps
Optimizing
Distribution
Granuality

Levels of Distribution

fra
frb

frc

Cloud
App
Original

Replica_1

Replica_2
…

Replica_k

Sandboxing with
minimum overheads

Replicating Distributed
Apps for Mobiles/Edges

• Enhancing/Adapting Distributed Apps

Our Sand-
Boxing

“SandBoxing(before)”

(Client-side) (Server-side)

//CLIENT: app/../property-details.ts
unfavorite(event, property){
 //Marshalling
this.pServ.unfavorite(property)
.subscribe(favorite //unMarshalling
 =>{ this.favorites =favorites;});
}

1)HTTP Request From Client

DELETE
/properties/favorite
HOST ..
[{"id":1,"city":..}]

HTTP/1.1 200 OK
Content-t: json
Content-Len: …
[{"id":2,"city"…]

2)HTTP Response From Server

Exit

Point

//SERVER:server.js
app.delete('/properties/favorites/'
, properties.unfavorite);
//server/properties.js
var favorites = require('./property').favs;
function unfavorite(request, response) {
 var id = request.body.id;//unMarshalling
 for (var i=0; i<favorites.length; i++){
 if (favorites[i].id == id){
 favorites.splice(i, 1);
 break;}}
 response.json(favorites)//Marshalling
}
//SERVER: server/property.js
exports.data = [{id: 1,...}];
exports.favs = [{id:2,…},…,{…}];

Entry
Point

4

(Correspondence for
“Marshaling” Points)

Server
Code

cClient
Code

Marshaling
client-param

Unmarshaling
server-return

Unmarshaling
client-param

Marshaling
server-return

Send
REQ

Get
RES

Get
REQ

Send
RES

Client Insourcing
Refactoring [WWW 2020]

1. Decode {client-parameter, server-return}
2. Instrument code parts that RWs these values

Replaying/Capturing

HTTP
Traffics

Equivalent
Centralized Code

Client
JS Code

Server
JS Code

Server

Client

② Solving
Constraints for

Extracting
Function

Dynamic Analysis
jalangi2

Static Analysis
z3 Datalog Engine

①Identifying
Entry/Exit
Points for

functionality

Entry/Exit
Points
(Facts)

Client Insourcing Refactoring [WWW 2020]

Replaying
HTTP

▪ Fuzzing HTTP records, Idempotent Executions

Original Full-Stack
JS App

5

Tool’s
Dictionary

Fuzzing
Replaying
HTTP

Instrument
Program

Program States
DB, Files, 𝑣", 𝑣#,…

Entry/Exit
Points

Idempotent Exec.

db.query("DELETE FROM recipes
WHERE id=id", …);

//Event Hooks in Jalangi2
write(name, val, lhs)
read(name, val, isglobal)
invokeFun(loc, f, args, val)..

invoke(f ,"ROLLBACK")

invoke(f ,"Start TRANSACTION")

▪ Extracting Function: Searching all dependent JS code in Entry/Exit points
▪ Extending Declarative approach for Program Analysis (z3py, Datalog Engine)

▪ JavaScript: GATEKEEPER [Security’09]: Point-to-Analysis, JSDep [FSE’15]:
Dependency Analysis

Server
Program

;;Generating Facts

𝐖𝐫𝐢𝐭𝐞 s", 𝑣_𝑎
𝐑𝐞𝐚𝐝 s#, 𝑣_𝑏
𝐖𝐫𝐢𝐭𝐞 s#, 𝑣_𝑏
…
𝐑𝐞𝐟 s$, 𝑣_𝑐, 𝑉1
𝐑𝐞𝐟 s%, 𝑣_𝑑, 𝑉2

à

;;Rules for Client Insourcing Refactoring
𝐃𝐚𝐭𝐚𝐃𝐞𝐩 s" , stmt# ← 𝐑𝐞𝐚𝐝 s", v" ∧𝐖𝐫𝐢𝐭𝐞 s#, v"
;;JS-Dep, GATEKEEPER
𝐔𝐧𝐌𝐚𝐫 s", v&'()* , V&'()*

&#$

← 𝐖𝐫𝐢𝐭𝐞 s", v&'()* ∧ 𝐑𝐞𝐟 v&'()*, V&'()*
&#$

𝐌𝐚𝐫𝐬𝐡𝐚𝐥 s", v()* , V()*
&#$

← 𝐖𝐫𝐢𝐭𝐞 s", v()* ∧ 𝐑𝐞𝐟 v()*, V()*
&#$

ExecutedStmts(s', V&'()*
&#$,	 V()*

&#$)
← 𝐃𝐚𝐭𝐚𝐃𝐞𝐩 s' , s" ∧ 𝐌𝐚𝐫𝐬𝐡𝐚𝐥 s", v()* , V()*

&#$ ∧

. ¬𝐃𝐚𝐭𝐚𝐃𝐞𝐩(s' , s#) ∧ 𝐔𝐧𝐌𝐚𝐫 s", v&'()* , V&'()*
&#$

//SERVER: server/property.js
exports.data = [{id: 1,...}];
exports.favs = [{id:2,…},…,{…}];

//SERVER:server.js
app.delete('/properties/favorites/'
, properties.unfavorite);
//server/properties.js
var favorites = require('./property').favs;
function unfavorite(request, response) {
 var id = request.body.id;//unMarshalling
 for (var i=0; i<favorites.length; i++){
 if (favorites[i].id == id){
 favorites.splice(i, 1);
 break;}}
 response.json(favorites)//Marshalling
}

//app/../b8f9a.js
exports.favorite = [{id: 1,city:'Bo',
…}];
//app/../j5ga2.js
var favorites =
require('./b8f9a').favorites;

export function j5ga2(input){
 var tmpv1 = input; var id = tmpv1.id;
 for (var i=0; i< favorites.length;
i++){…}
 tmpv0 = favorites; var output = tmpv0;
 return output;}//extracted function

“Extract
Function”
Refactoring

Resulting
Centralized Program

//CLIENT: app/../property-details.ts
import {j5ga2} from './j5ga2';
unfavorite {...code for synchronized call
//default: non-blocking call

 new Promise((resolve,reject) => {
 var out_j5ga2 = j5ga2(property);
 resolve(out_j5ga2);
 }).then(res => this.favorites = res);
}

//CLIENT: app/../property-details.ts
unfavorite(event, property){
 //Marshalling
this.pServ.unfavorite(property)
.subscribe(favorite //unMarshalling
 =>{ this.favorites =favorites;});
}

Original Client Code

Transforming
Client Code

Original Server Code

;;z3 Datalog Engine
Query ExectedStmts for specific HTTP method
{Client Param, Server Return}

Client Insourcing Refactoring [WWW 2020]

6

getVoc

Commutation
Overheads

Server-Side
(/api/ladydog)

Level of granularity

Client-Side

Too Small
Distribution

GetC

GetSen GetDial

getCol

getVoc GetC
GetSenGetDial

getCol

Too Much
Distribution

“Right”
Redistribution

(Right boundary)

getVoc GetC

GetSen
GetDial

getCol

§ Determine which functional distribution would
minimize the cost of distributions
§ CDist_Exec(r) = α·latency(r) + (1−α)· Σ resource(r)

§ Large Distribution Space: Our Tool automates!
§ Ex) 394 × 4139 ∼= 1.6 × 106 ULOCs

30
40
50
60
70
80

1 2 3 4 5 6 7 8

30

50

70

90

110

1 2 3 4 5 6 7 8

100

120

140

160

180

1 2 3 4 5 6 7 8

30
40
50
60
70
80

1 2 3 4 5 6 7 8
30
40
50
60
70
80

1 2 3 4 5 6 7 8

/api/theb
igtrip

/api/la
dypet

/api/the_d
/api/thegift

40
50
60
70
80
90

1 2 3 4 5 6 7 8

/api/wall
paper

30
40
50
60
70
80

1 2 3 4 5 6 7 8

/api/thecask

60

110

160

210

260

1 2 3 4 5 6 7 8

/api/offshore

/api/therea
droom

Too Small
Distribution

Too Much
Distribution

Right
Distribuiton

§ Correcting ill-conceived Distributions
§ Ex) Nano-service anti pattern

7

CostDist

Application 1: Optimizing Cloud Services [SANER 2020]
Restructuring Distribution

Remote

(Re-Distribution)

rk-1 rk

r1 r2r

Client
Insourcing

partition batch*
r2

r1

…
rk-1

rk

r_local

r_local2

r_local1
r_localk-1
r_localk

…

(Equivalent Variant)

r_local
1r_local2

r_localk-
1r_localk

…

Partitioning

Client
DTO

f1_f2_f3

Remote
Façade
f1_f2_f3DTO_

script

D1
D2
…
DN

| C1
| C2
…
| CN

Distribution | Cost

Headless
Browser Testing Tool

Inline Functions
Refactoring

Remote Batch
Invocation
[Fowler '02, Ibrahim et.al ECOOP '09]

Local

(Original Distribution)

Min Cost
Distribution

Application 1: Optimizing Cloud Services [SANER 2020]
Restructuring Distribution

8

Buggy JS
Full-Stack App Fixed JS

Full-Stack App

FixedPartcent

3.Release
PatchOriginal

App

GNU
Patch

{Mapping Table}

1.(Client Insourcing)

profilerafterprofilerbefore

Bottleneck
Inspector

Leak
Inspector

Centralized
Code(Fixed)

Improved?

Source
Rewriter

Bug Inspection (CPU/Memory)

Mapping
Table

Centralized
Code(Buggy)

2.(Bug Fixed in
Centralized Variant :Catch)

//server/main.js...
function getObjsInArr(obj, array){
var foundObjs = [];
for (var i=0; i<array.length;i++){
for(var prop in obj) {
if(obj.hasOwnProperty(prop)) {
if(obj[prop]===array[i][prop])
{
foundObjs.push(array[i]);
break;

}}}}
return foundObjs;
}

5,18c1,16
<(original code for getObjsInArray)

> function getObjsInArr(obj, array) {
> var foundObjs = [];
> var keys = Object.keys(obj);
> for (var i=0; i < array.length; i++){
> for (var j = 0, l = keys.length; j <

l; j++) {
> var key = keys[j];
> if (obj[key] === array[i][key]) {
> foundObjs.push(array[i]);
> break;
> }}}
> return foundObjs;}

∆𝑻𝒅𝒊𝒔𝒕(%)0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35
/api/offs

misused
APIs

Inefficient
loop

/api/amont

/favorite

/users/search

/users/search/i
d

/api/thed

/api/big
/api/wall
/api/theg

/api/thered
/api/lady

𝑷𝒃𝒆𝒇𝒐𝒓𝒆 − 𝑷𝒂𝒇𝒕𝒆𝒓
𝑷𝒃𝒆𝒇𝒐𝒓𝒆

∆𝑻𝒄𝒆𝒏𝒕(%)

§ Fixing Bugs in Centralized Variants
and Generating Patches

§ 90% Reduced Time to execute
Debugging Task

Application 2: Bug Fixes [ICWE 2019]

9

☞
Reduced
Steps

<Conventional Debugging> <Our Simplification>

▪ Design and Execution Time Mismatch – Client/Server Arch.
▪ Client Insource or Revert {CodeServer, State} based on Exec

Conditions
▪ Automated Program Transformation for Adaptive Arch.

CWV
Transform

revert

insource

Client
Server

Client

Full-Stack
JS App

/service_r
(remote)

/service_r

(Empty
Vessel)

Client
Server

fr
(local)

Network Condition

(Good
Network) (Bad Network)Templates (Browser):

1. Monitoring tool
2. wasm
3. SandBox
4. Light Database

100

CWV
Before

200 300

300

200

RTT[ms]

Response
Time[ms]

cutoff

1k

100 1k

2k

2k 2.8k
cutoff

300

100
400

500

600 800 1k
cutoff

1k
100

3k
2k

1k 2k 3k
cutoff

1k

500

100
300 500 800 1.1k

cutoff

10
0

50
0

1k

1.5k

cutoff
500 1k 1.5k

Fixed

Server

Application 3: Communicating Web Vessels (CWV)
Best Paper Award 🏆 [ICWE 2021]

10

Publications & Honors in PhD
(fu l l l i s t : h t tp s : / / k jp ro j84 .g i th u b . io/ p u b l i cat ion s)

No. Paper Conference Area

1. Client Insourcing
Refactoring

WWW 2020
(19%, 217/1129,
Top-tier)

System
(Web)

1st
Author/2

2. D-Goldilocks SANER 2020
(21%, 42/199)

Software
Engineering

1st
Author/2

3.
Catch&Release
(Debugging)

ICWE 2019
(25%, 26/106)

System
(Web)

1st
Author/2

4.
Comm Web Vessels ICWE 2021

(17%, 22/128,
Best Paper 🏆)

System
(Web)

1st
Author/2

5. EdgeFy: Edge-based
framework

Submitted System
(Middleware)

1st
Author/2

6.
[Appendix]
Project1: Differencing
Cross-platform Apps

MobileSoft 2018
(Nominated
for Best Paper)

Software
Engineering

1st
Author/3

7. [Appendix]
Project2: Distributing
Embedded Apps
for Trusted Exec.

GPCE 2018 Software
Engineering

2nd
Author/3

8.
Journal of Com. Lang.
(Nominated
for Best Paper)

Software
Engineering

2nd
Author/3

11

§ Main work presented in WWW 2020 (Top-tier)
§ One Best Paper Award & Two Best Paper Nominations

§ Two Spotlights from CS@VT

§ Two Doctoral Symposium Papers in
WWW 2020 and ICWE 2019

https://kjproj84.github.io/publications

12

MS: Computer Networking (2 years)

• MS Thesis: A Cross-layer Scheme
for Video Data Transmission

• Routing Protocols for Ad hoc
Networking: AODV, DSR

• MAC Scheduler: WLAN or Zigbee
• ICC 2009 (Conf), ACM/Springer

Wireless Network 2013 (Journal)

2009In addition, the node urgency at each individual node is

presented in Fig. 14. This shows that the proposed joint
working algorithms can maintain consistently low node

urgency among active nodes, whereas some active nodes

participating in data forwarding obviously have high node
urgency in the other methods. The statistical results in

Table 4 indicate that the proposed joint working algorithms

can significantly decrease the average, maximum, and
standard deviation of node urgency by distributing traffic

over the entire network.

3.4 Performance comparison with respect to achievable

video quality

It is well known that video traffic is very sensitive to delay and

delay jitter. In this section, the achievable video quality is

measured for 14 connections. During the experiment, the
H.264/AVC JM 15.1 [39] video codec is employed. The test

video sequences are the QCIF (Quarter Common Intermediate

Format)-sized City, Crew, and Foreman. The video stream is
encoded at 15 fps, and its target bandwidth is set to the value of

the product of the packet size and the average number of

packets received per second that satisfies the end-to-end delay
requirement at the destination node. A group of pictures (GOP)

consists of 15 frames (IPPPPPPPPPPPPPP). The performance

measure is the achievable peak signal to noise ratio (PSNR)
value without scene freezes. The resulting PSNR curves are

presented in Fig. 15, and the results are summarized in

Table 5. As shown in the table, it is obviously observed that the
proposed joint working algorithms provide better PSNR values

than the other methods. For the subjective quality comparison,

some captured frames are presented in Fig. 16. It is apparently
observed in the figures that the proposed joint working algo-

rithms can support much better subjective video quality than

those of the existing routing algorithms.

4 Conclusion

In this paper, we have proposed urgency-based joint

working packet scheduling and routing algorithms that
effectively support delay-sensitive data transmission over

multi-rate MANETs. Basically, packet urgency, node

urgency, and route urgency have been defined on the basis
of the end-to-end delay requirement. Effective tightly

coupled packet scheduling and routing algorithms have

been designed based on these metrics. The experimental
results have shown that the proposed joint working algo-

rithms provide better service for delay-sensitive data

transmission over multi-rate MANETs than the other
methods, by distributing the traffic load over the entire

network and effectively controlling the packets accumu-

lated in the buffer of each node.

Acknowledgments This research is supported by the MKE (The
Ministry of Knowledge Economy), Korea, under the HNRC (Home
Network Research Center)—ITRC (Information Technology
Research Center) support program supervised by the NIPA (National
IT Industry Promotion Agency) (NIPA-2011-C1090-1111-0010) and
World Class University program funded by the Ministry of Education,
Science and Technology through the National Research Foundation of
Korea (R31-10100).

Fig. 16 Subjective video quality comparison of the 57th frame of
Foreman video sequence: a Proposed joint working algorithms,
b proposed routing algorithm with FCFS/Drop-tail/RBAR, c QAR

with FCFS/Drop-tail/RBAR, d AODV with FCFS/Drop-tail/RBAR,
and e DSR with FCFS/Drop-tail/RBAR

Wireless Netw (2013) 19:1595–1609 1607

123

In addition, the node urgency at each individual node is

presented in Fig. 14. This shows that the proposed joint
working algorithms can maintain consistently low node

urgency among active nodes, whereas some active nodes

participating in data forwarding obviously have high node
urgency in the other methods. The statistical results in

Table 4 indicate that the proposed joint working algorithms

can significantly decrease the average, maximum, and
standard deviation of node urgency by distributing traffic

over the entire network.

3.4 Performance comparison with respect to achievable

video quality

It is well known that video traffic is very sensitive to delay and

delay jitter. In this section, the achievable video quality is

measured for 14 connections. During the experiment, the
H.264/AVC JM 15.1 [39] video codec is employed. The test

video sequences are the QCIF (Quarter Common Intermediate

Format)-sized City, Crew, and Foreman. The video stream is
encoded at 15 fps, and its target bandwidth is set to the value of

the product of the packet size and the average number of

packets received per second that satisfies the end-to-end delay
requirement at the destination node. A group of pictures (GOP)

consists of 15 frames (IPPPPPPPPPPPPPP). The performance

measure is the achievable peak signal to noise ratio (PSNR)
value without scene freezes. The resulting PSNR curves are

presented in Fig. 15, and the results are summarized in

Table 5. As shown in the table, it is obviously observed that the
proposed joint working algorithms provide better PSNR values

than the other methods. For the subjective quality comparison,

some captured frames are presented in Fig. 16. It is apparently
observed in the figures that the proposed joint working algo-

rithms can support much better subjective video quality than

those of the existing routing algorithms.

4 Conclusion

In this paper, we have proposed urgency-based joint

working packet scheduling and routing algorithms that
effectively support delay-sensitive data transmission over

multi-rate MANETs. Basically, packet urgency, node

urgency, and route urgency have been defined on the basis
of the end-to-end delay requirement. Effective tightly

coupled packet scheduling and routing algorithms have

been designed based on these metrics. The experimental
results have shown that the proposed joint working algo-

rithms provide better service for delay-sensitive data

transmission over multi-rate MANETs than the other
methods, by distributing the traffic load over the entire

network and effectively controlling the packets accumu-

lated in the buffer of each node.

Acknowledgments This research is supported by the MKE (The
Ministry of Knowledge Economy), Korea, under the HNRC (Home
Network Research Center)—ITRC (Information Technology
Research Center) support program supervised by the NIPA (National
IT Industry Promotion Agency) (NIPA-2011-C1090-1111-0010) and
World Class University program funded by the Ministry of Education,
Science and Technology through the National Research Foundation of
Korea (R31-10100).

Fig. 16 Subjective video quality comparison of the 57th frame of
Foreman video sequence: a Proposed joint working algorithms,
b proposed routing algorithm with FCFS/Drop-tail/RBAR, c QAR

with FCFS/Drop-tail/RBAR, d AODV with FCFS/Drop-tail/RBAR,
and e DSR with FCFS/Drop-tail/RBAR

Wireless Netw (2013) 19:1595–1609 1607

123

In addition, the node urgency at each individual node is

presented in Fig. 14. This shows that the proposed joint
working algorithms can maintain consistently low node

urgency among active nodes, whereas some active nodes

participating in data forwarding obviously have high node
urgency in the other methods. The statistical results in

Table 4 indicate that the proposed joint working algorithms

can significantly decrease the average, maximum, and
standard deviation of node urgency by distributing traffic

over the entire network.

3.4 Performance comparison with respect to achievable

video quality

It is well known that video traffic is very sensitive to delay and

delay jitter. In this section, the achievable video quality is

measured for 14 connections. During the experiment, the
H.264/AVC JM 15.1 [39] video codec is employed. The test

video sequences are the QCIF (Quarter Common Intermediate

Format)-sized City, Crew, and Foreman. The video stream is
encoded at 15 fps, and its target bandwidth is set to the value of

the product of the packet size and the average number of

packets received per second that satisfies the end-to-end delay
requirement at the destination node. A group of pictures (GOP)

consists of 15 frames (IPPPPPPPPPPPPPP). The performance

measure is the achievable peak signal to noise ratio (PSNR)
value without scene freezes. The resulting PSNR curves are

presented in Fig. 15, and the results are summarized in

Table 5. As shown in the table, it is obviously observed that the
proposed joint working algorithms provide better PSNR values

than the other methods. For the subjective quality comparison,

some captured frames are presented in Fig. 16. It is apparently
observed in the figures that the proposed joint working algo-

rithms can support much better subjective video quality than

those of the existing routing algorithms.

4 Conclusion

In this paper, we have proposed urgency-based joint

working packet scheduling and routing algorithms that
effectively support delay-sensitive data transmission over

multi-rate MANETs. Basically, packet urgency, node

urgency, and route urgency have been defined on the basis
of the end-to-end delay requirement. Effective tightly

coupled packet scheduling and routing algorithms have

been designed based on these metrics. The experimental
results have shown that the proposed joint working algo-

rithms provide better service for delay-sensitive data

transmission over multi-rate MANETs than the other
methods, by distributing the traffic load over the entire

network and effectively controlling the packets accumu-

lated in the buffer of each node.

Acknowledgments This research is supported by the MKE (The
Ministry of Knowledge Economy), Korea, under the HNRC (Home
Network Research Center)—ITRC (Information Technology
Research Center) support program supervised by the NIPA (National
IT Industry Promotion Agency) (NIPA-2011-C1090-1111-0010) and
World Class University program funded by the Ministry of Education,
Science and Technology through the National Research Foundation of
Korea (R31-10100).

Fig. 16 Subjective video quality comparison of the 57th frame of
Foreman video sequence: a Proposed joint working algorithms,
b proposed routing algorithm with FCFS/Drop-tail/RBAR, c QAR

with FCFS/Drop-tail/RBAR, d AODV with FCFS/Drop-tail/RBAR,
and e DSR with FCFS/Drop-tail/RBAR

Wireless Netw (2013) 19:1595–1609 1607

123

Our’s
Video PSNR Drop Packets

Network
Layer

Delay
Requirement
For Video
(buffering)

Dmax

Route
Maintenance

Route
Construction

Request
Route

Service
Next

Packet
SchedulingNode

Urgency

Route
Urgencymin

MAC
Layer

Unlikely to Dmax

Most Urgent

Dmax
|R|/UnodeApp

Layer

(sharing paramters)

Before PhD Program: 1. ''Computer Networking’’
2. ''Cloud-based Distributed Systems''

ヮ뇲길 1 ヮ뇲길 2

긳Ⅵ꽰 궨뇽 1 긳Ⅵ꽰 궨뇽 2

긳Ⅵ꽰 뇬뇽 1
긳Ⅵ꽰 뇬뇽 2

MediaGateway
(L2)

mAP#1~4

eAP#1~6

ㅚ낅냌꽗굄(BiasT)

BTS

TDM

꿟뇬끛 こ eIBS ⒥귍

⑸냌꽗굄

eRO

괧リ귄 ⓩ꿟⒦

②신규구성
(ㅚ꾆꺕꽗뇤뇯リ)

.

.

.

L2 긫꼲낤
예전 구성
(VLAN⒥귍 곐 ⊥꾍꺕꽗뇤뇯リ)

L2 Switch

Optical
Lines

Donor

BiasT

• Developing/Optimizing Base
Station’s MAC Protocols

• WiFi/Repeater System : Remote
Management tool for Metro (TR-069)

• Developing Business Functions for
WiFi/VoiP System (Asterisk, SIP/RTP)

(Network) System
Software Engineer
(3 years 4 months)

VoCodec & Qualty Call Tests (RTP/SIP)

[WiFi/VoIP System for Business Solution]

Monitoring
WiFis

[WiFi/Repeater
System for Metro
Environment]

2012
Industry #1

Beginning my
PhD Program
(2015.8~)(Top Korean National Lab)

Software Engineer/Researcher
(2 years 10 months)

• Cloud-based Distributed
System for a Robot Service

• Scale/Fault Tolerant for
Sensor Units x N

• Web-based Service
Scheduler

2015
Industry #2

Sensor Units X N

(Networked)

Scale
/Fault Tolerant

Distributed
System

ß
{Who/

Where/
Wat}

Appendix
ü Other Projects
ü System Design Experience

13

13

Appendix: Understanding Heap Spraying Attacks
User Study (Pre/Post Survey): IRB, 540 undergrads for 3 Semesters
(see more detail in https://kjproj84.github.io/teaching)

14

stewes36@vt.edu

“This assignment was

very challenging, but

a lot of fun too!”

• NSF-funded project for increasing CyberSecurity-related education in
CS and ECE core courses at Virginia Tech

• I developed the Level 3: Understanding Heap Spraying Attacks

Students’ Achievements

Full Grades

Very Good Feedback
from Students

Heap low

Heap high

PayloadNOP Sled
PayloadNOP Sled

PayloadNOP Sled
PayloadNOP Sled

PayloadNOP Sled

….

▪ Next Level of “Attack Lab”
▪ Systems: Victim Server, Grader

:Executing and Evaluating Programs
▪ Extension of JavaScript Engine: V8

JS

JS

JS

[Victim Server]
$./success

90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
90 90 90 90 90 90 90 90 90 90 90 90 90 ….90
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90

NOP
Sledding

1. Crafting Assembly Code for a system call

malicious
JavaScript

./sample: file format elf64-x86-64
Disassembly of section .text:
0000000000400078 <start>:
400078: 48 c7 c0 01 00 00 00 mov $0x1,%rax
40007f: 48 c7 c7 01 00 00 00 mov $0x1,%rdi
400086: 48 8d 35 19 00 00 00 lea 0x19(%rip)…
40008d: 48 c7 c2 0e 00 00 00 mov $0xe,%rdx
400094: 0f 05 syscall
400096: 48 c7 c0 3c 00 00 00 00 mov $0x3c,%rax
40009d: 48 c7 c7 00 00 00 mov $0x0,%rdi
4000a4: 0f 05 syscall

15

“Payload”

2. Heap Spraying with JS Code

3. Submitting JS Code to Attack Server

Appendix: Understanding Heap Spraying Attacks
User Study (Pre/Post Survey): IRB, 540 undergrads for 3 Semesters
(see more detail in https://kjproj84.github.io/teaching)

Appendix:
Refactoring Embedded Apps for Trusted Execution
[GPCE 2018], Best Paper Nomination at [COLA 2020]

ARM
Normal World

App

Secure World
App

OPTEE

16

§ Programmers: Annotating CPI portions
§ Partitioning C/C++ code into the regular and trusted parts

§ LLVM/Clang based Analysis/Refactoring, OPTEE (SGX in [COLA 2020])

AR
M

 T
R

U
ST

ZO
N

E
FI

R
M

W
AR

E

RT-Trust
Embedded

Apps
C/C++

Annotations

ex) PX4_Firmware

17

No. Java
Syntax type

Swift
Syntax type

Java template Swift template

1 typeDeclaration class_decl public class $p10 extends $p11 {...} public class $p10: $p11{...}

2 classBodyDecl function_decl private void $p20() {...} private func $p20() {...}

3 localVarDeclStmt cnst_decl $p30 $p31 = $p32; let $p31 = $p32
4 expression expression $p33.getEntryCount() $p33.entryCount
5 localVarDeclStmt var_decl $p40 $p41 = $p42; var $p41 = $p42
6
7

statement
expression

for_in_stat
expression

for($p50 $p51 = $p52; $p51 < $p53; $p51++)
{...}
$p54.getDataSetCount()

for $p51 in $p52 ..< $p53
{...}
$p54.dataSetCount

8
9

statement
expression

cnst_decl
expression

$p60 $p61 = $p62;
$p63.get($p64)

let $p61 = $p62
$p63[$p64]

//PieChart.java
1 public class PieChart extends PieChartBase<PieData>
{...
2 private void calcAngles() { ...
3 int entryCount = mData.getEntryCount();
4 int cnt = 0;
5 for(int i = 0; i < mData.getDataSetCount(); i++){
6 IPieDataSet set = mData.get(i);
7 …}}}

//PieChartView.swift
public class PieChartView: PieChartViewBase
{…
private func calcAngles() { ...
let entryCount = data.entryCount
var cnt = 0
for i in 0 ..< data.dataSetCount {
let set = data[i]

...}}}

Rule
Database

Phase I: Rule Inference

Code Alignment Code Matching

Mappings

A Java
Program

Mapping
Selection

Code
Translation

A Generated
Swift Program

Phase II: Rule Application

Template Generation
(Differencing)

Delimiters
Operators
Keywords

Java
code

Swift
code

Java Parser

Swift Parser

Appendix:
Learning Translating Rules/APIs from Cross-platform Apps
Best Paper Nomination at [MobileSoft 2018]

§ Subject: Full-Stack JavaScript apps (Node.js): Popular in Backend and Open Source
§ Backends follow a lower load time development: Netflix, Uber, LinkedIn,…

§ RESTful HTTP Protocols
§ Insourcing Business (Application) Logic only

§ What else? Failure/Exception handling Logics

§ Server State Isolations/Replications
§ Database with SQL, Files, and global variables

Appendix: Applicability of Client Insourcing

18

[Trend in JS Backend Developments] [Trend in Github Repositories]

Middleware
Libraries

(Server-side)
(Client-side)

Programmer-written
Middleware API Calls

Programmer-
written Code

Business Logic

18

App!"#$"#%&'(%

App'%)"*+
,-

Transpiler

App!"#$"#%&'(%

App'%)"*+
,-

U-VMs

App'%)"*+
,-

App'%)"*+
,-

App!"#$"#
%&'(%,,-

App!"#$"#%&'(%

App/)!+
(Polyglot)

[Applicability for Polyglot apps]

Client
Insourcing

