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Abstract

In a mobile web app, a browser-based client communicates with a cloud-
based server across the network. An app is statically divided into client and
server functionalities, so the resulting division remains fixed at runtime. How-
ever, if such static division mismatches the current network conditions and
the device’s processing capacities, app responsiveness and energy efficiency
can deteriorate rapidly. To address this problem, we present Communicating
Web Vessels (CWV), an adaptive redistribution and replication framework
that improves the responsiveness of full-stack JavaScript mobile apps. Unlike
standard computation offloading, in which client functionalities move to run
on the server, CWV’s redistribution is bidirectional. Without any preprocess-
ing, CWV enables apps to move any functionality from the server to the
client and vice versa at runtime, thus adapting to the ever-changing execution
environment of the web. Having moved to the client, former server functional-
ities become regular local functions. To further improve performance, CWV
can replicate server-side functionalities on the client and keep the replicas
consistent. By monitoring the network, CWV determines if a redistribution or
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a replication would improve app performance, and then analyzes, transforms,
sandboxes, moves, or replicates functions and program state at runtime. An
evaluation with third-party mobile web apps shows that CWV optimizes
their performance for dissimilar network conditions and client devices. As
compared to their original versions, CWV-powered web apps improve their
performance (i.e., latency, energy consumption), particularly when executed
over limited networks.1

Keywords: Mobile web apps, JavaScript, dynamic adaptation, program
analysis & transformation, web frameworks, replication.

1 Introduction

Mobile web apps are fundamentally distributed: browser-based clients com-
municate with cloud-based servers over the available networks. Distribution
assigns an app component to run either on the client or on the server. Some
distribution strategies are predefined; for example, user interfaces must dis-
play on the client. Other distribution strategies aim at improving performance;
for example, a powerful cloud-based server can execute some functional-
ity faster than can a mobile device. Network communication significantly
complicates the device/ cloud performance equation. For a client to execute
a cloud-based functionality, it needs to pass parameters and receive results
over the network. Transferring data across a network imposes latency and
energy consumption costs. For low-latency, high-bandwidth networks, these
costs are negligible. For limited networks, these costs can grow rapidly and
unexpectedly. The overhead of network transfer can not only negate the per-
formance benefits of remote cloud-based execution, but also strain the mobile
device’s energy budget. Operating over limited high-loss networks requires
retransmission, which consumes additional battery power [40]. Hence, fixed
distribution can hurt app responsiveness and energy efficiency.

Changing the locality of a software component can be non-trivial due to
the differences in latency, concurrency, and failure modes between central-
ized and distributed executions [3, 4, 41]. Researchers and practitioners alike
have thoroughly explored the task of rendering local components remote.
Cloud offloading moves local functionalities to execute remotely in the
cloud [10, 25, 35, 42]. Nevertheless, standard offloading is unidirectional:

1This article is a revised and extended version of our prior paper, published in the 21st
International Conference on Web Engineering (ICWE 2021) [9].
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it can only move a client functionality to run on a server. If mobile web
apps are to flexibly adapt to the ever-changing execution environment of the
web, client and server functionalities may need to adaptively switch places at
runtime.

We address this problem by adaptively redistributing the client and server
functionalities of already distributed applications to optimize their perfor-
mance and energy efficiency. Our approach works with full-stack JavaScript
apps, written entirely (i.e., client and server) in JavaScript. By dynamically
instrumenting and monitoring app execution, our approach detects when
network conditions deteriorate. In response, it moves the JavaScript code,
program state, and SQL statements of a remote service to the client, so
the service can be invoked as a regular local function. To prevent cross-
site scripting (XSS) or SQL injection attacks, the moved code is sandboxed,
creating a separate context with reduced privileges for safe execution in
the mobile browser. Thus, the same functionality can be invoked locally or
remotely as determined by the current execution environment. To the best of
our knowledge, our approach is the first one to support bidirectional dynamic
redistribution of distributed mobile web apps. Moreover, to take advantage of
our approach, a mobile app needs not be written against any specific API or
be pre-processed prior to execution.

Some functionalities cannot be moved across execution sites, but they can
be replicated. For example, a server component could reflect the latest updates
to a shared database, modified by different applications. This component
cannot be moved away from the physical database engine, running on the
server. However, this component can be replicated on the client, with the
server changes synchronized with the client copy and vice versa. In addition,
replicating rather than moving a functionality can offer better performance.

We called the reference implementation of our approach – Communicat-
ing Web Vessels (CWV) – due to its reminiscence of communicating vessels, a
physical phenomenon of connected vessels with dissimilar volumes of liquid
reaching an equilibrium. CWV balances mobile execution by adaptively
redistributing functionalities between the server and the client, thus optimiz-
ing app performance for the current execution environment. Our contribution
is three-fold:

1. A novel bidirectional redistribution approach that dynamically adapts
distributed mobile apps for the current execution environment.

2. A reference implementation of our approach, CWV, that works with
increasingly popular full-stack JavaScript mobile apps. Requiring no
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pre-processing, CWV dynamically adapts apps by redistributing and/or
replicating their JavaScript code, program state, and SQL statements at
runtime.

3. A comprehensive evaluation with 23 remote services of 8 real-world
apps. To assess the effectiveness of CWV’s adaptations, we report on
their impact on execution latency and energy consumption.

The rest of this paper is structured as follows. Section 2 motivates and
explains our approach. Section 3 describes the reference implementation of
our approach. Section 4 presents our evaluation results. Section 5 compares
our approach to the related state of the art. Section 6 presents concluding
remarks.

2 Approach

We first present a motivating example, then give an overview of CWV, and
finally discuss our performance model.

2.1 Motivating Example

Consider Bookworm, an e-reader app for reading books on mobile devices.
The app also provides text analysis features that report various statistical facts
about the read books. The app is distributed: the client hosts the user interface;
the server hosts a repository of available books and a collection of text
processing routines. The current architecture of Bookworm is well-optimized
for a typical deployment environment: a resource-constrained mobile device
and a powerful server, connected to each other over a reliable network. For
limited networks, the performance equation can change drastically. Hence, to
exhibit the best performance for all combinations of client and server devices
and network connections, the app would have to be distributed in a variety
of versions. Even if developers were willing to expend a high programming
effort to produce and maintain all these versions, network conditions can
change rapidly while the app is in operation, necessitating a different clien-
t/server decomposition. Clearly, achieving optimal performance under these
conditions would require dynamic adaptation.

Our framework, CWV, can adapt Bookworm, so its remote text processing
routines could migrate to the client at runtime for execution. CWV monitors
the network conditions, migrating server-side functions to the client and
reverting the execution back to the server, as determined by the network
conditions. The app can start executing with all the text processing routines
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Figure 1 Conceptual view of communicating web vessels (CWV).

running on the server. Once the network connection deteriorates, a portion
of these routines would be transferred over the network to the client, so
they could execute locally. CWV’s static and dynamic analyses determine
the dependencies across server functions and their individual computational
footprints. This information parameterizes CWV’s performance model, which
determines which part of server functionality needs to migrate to the client
under the current network conditions.

2.2 Approach: Communicating Web Vessels

To optimize the performance of mobile web apps for the current net-
work conditions, CWV continuously applies the two operations depicted in
Figure 1:

1. fr = insource(/service r): The client requests that the server transfer
the remote functionality(/service r)’s partition fr to the client.

2. revert(fr): The client stops locally invoking the insourced partition fr,
and starts remotely invoking its original server version /service r.

2.3 Reasoning About Responsiveness

Responsiveness is a subjective criteria: application is responsive if the user
perceives the time taken to execute app functionalities as “short”. For this
reason, we define the responsiveness of a remote execution as the total
execution time that elapses between the client invoking a remote functionality
and the results presented to the user. We define the response time of a remote
functionality fr as RT (fr). The RT (fr) mainly depends on the “server
speed” and “network speed” parameters. We simplify the responsiveness
of fr by means of the execution time fr on the server Tserver(fr) and the
remaining remote execution overheads. The resulting Round Trip Time (RTT)
is highly affected by the current network conditions. To estimate the network
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conditions, CWV utilizes the RTTnet metrics, detailed in Section 3.5.1.

RT (fr) =

{
Tserver(fr) +RTTnet remote exec.,

Tclient(fr) local exec.
(1)

If fr is executed locally, the responsiveness becomes the execution time
fr on the client Tclient(fr).

3 Reference Implementation

To move a server-side functionality to the client at runtime, one has to
migrate both the relevant source code and program state, which has to be
captured and restored at the client. JavaScript has a powerful facility, the
eval function, which executes a JavaScript program passed to it as a string
argument. One could simply duplicate the entire server-side code and its state,
passing them to a client-side eval. However, such a naı̈ve approach would
incur unacceptably high performance and security costs. Hence, our approach
applies advanced program analysis and automated transformation techniques
to minimize the amount of code to be transferred to and executed by the client
(Sections 3.1 and 3.4). Furthermore, our approach establishes an efficient
protocol for the transformed app to switch between different execution modes
(Section 3.5), transferring the relevant code correctly and safely (Sections 3.6
and 3.7).

3.1 Execution Model for Client/Server Programs

CWV replicates a subset of the cloud server’s state and code on clients. To
determine which subset to replicate, it analyzes the runtime traces of the
execution of cloud services. Consider a typical life-cycle of a cloud service:
(1) the server initializes itself to the “init state” and (2) the server receives
an HTTP request from the client and unmarshals the passed parameters, (3)
the server passes the unmarshalled parameters to the the remote functionality
fr, which starts executing, and (4) upon completing its execution, the service
marshals the response to return it over HTTP to the client. For brevity, we
refer to the above steps (2)(3)(4) as the ith execution or exec i.

fr : init, exec i, exec i+ 1, · · · (2)

To infer ith execution corresponding to the remote functionality fr, CWV

not only extracts the code executed in step (3), but also captures the subset of
the server’s state required to initialize a replica to be executed in the client.
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What complicates this procedure is that some cloud-based services are
stateful, and as such change their state with every execution. Hence, it
becomes problematic to detect their relevant subsets of the state to replicate.
Even if such stateful services could be restarted anew for every execution,
only some of their states would be restored, as they also often persist data in
a database.

3.2 Isolating and Replicating States

CWV isolates state changes when analyzing the dynamic execution traces of
server-based services. This state isolation ensures that the server’s init state
and the service’s execution results remain fixed. To that end, after the init

is executed, its state is checkpointed and subsequently restored before every
repeated service execution as follows:

init, save init, exec i, restore init, exec i+ 1, · · · (3)

To be specific, CWV identifies and replicates several different units
of cloud-based services that typically include “a database”, “files”, and
“program variables” [20].

Database Tables: CWV monitors dynamic traces of a Node.js cloud-based
service with Jalangi [33], a dynamic JavaScript analysis framework. To iden-
tify database-related statements, CWV instruments all function invocations
whose argument values are SQL commands. To that end, CWV modifies the
INVOKEFUN(LOC, F, ARGS, VAL) callback API of Jalangi to be able to examine
the arguments parameter, args. Then, it adds shadow executions into the
identified SQL invocations loc to trace the changes to the database state. First,
CWV appends shadow execution of the original SQL command with a SQL
command to snapshot the entire dependent tables. Next, it adds transactional
executions START TRANSACTION and ROLLBACK against the original SQL
commands, to keep the database tables unchanged.

Files: In cloud-based services, files can be accessed both locally and remotely.
To identify file accesses, CWV instruments all invocations whose argu-
ments are file URLs. It then duplicates the identified files by copying or
downloading.

Global variables: CWV adds get/set function instrumentation after the decla-
rations of global variables to implement their save and restore operations.
After the server has been initialized, CWV deeply copies all global variables
and saves their states. The restore operation passes the saved states to each
variable’s set function.
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3.3 Replicating Relevant Server Source Code and Program State

Server code comprises business logic and middleware libraries. The server-
side business logic can store some states in the server program by including
database access routines or other mechanisms. The portion that needs to
be insourced is business logic only. In other words, business logic must be
reliably separated from all middleware-related functionality. To that end,
CWV identifies the entry and exit statements of the business logic portion,
equivalently to unmarshaling/marshaling points for the steps of exec i, and
then extracts all the code executed between these statements, converting that
code to a new regular JavaScript function. All the dependent code of this
new function is also extracted and transferred, thus producing a self-sufficient
execution unit.

The specific steps are as follows. First, CWV normalizes the server code
to facilitate the process of separating its business logic from middleware
functionality. Then, CWV locates the statements that “unmarshal” the client
parameters and “marshal” the result of executing the business logic. CWV

automatically identifies these statements by capturing the client server HTTP
traffic and instrumenting code at the server and at the client (Figure 2-(a)).
To that end, CWV uses Jalangi [33], already used for isolating the server
program’s states. CWV modifies the built-in Jalangi’s callback API calls to
be able to detect the events that correspond to the “unmarshal/marshal”
statements. By following these steps, CWV identifies the specific lines of
code and variables that correspond to the entry and exit points of remote
invocations, both at the server and the client.

The statements executed between these points comprise the server-side
business logic and its dependent program states that may need to be moved
to the client at runtime. To identify a subset of statements that satisfies
a pair of entry/exit statements, CWV follows a strategy similar to that of
other declarative program analysis frameworks that analyze programs by
means of a Datalog engine [7,36–38]. CWV encodes the declarative facts that
specify the behavior of JavaScript statements of server program: (1) declara-
tions of variables/functions, (2) their read/writes operations, and (3) control
flow graphs. The dependency analysis query constructs a dependency graph
between statements. Then, CWV solves constraints describing these points
with the z3 engine [11] and then extracts them into a CWV-specific object that
is movable between vessels (Figure 2-(b)).

Some server-side program statements use third-party APIs, whose
libraries and frameworks are deployed only at the server. CWV provides
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Figure 2 Automated program transformation for enabling CWV.

domain-specific handling of the statements that interact with relational
databases. In particular, some statements interacting with a server-side rela-
tional database cannot be directly migrated to the client. As a specific exam-
ple, consider the statement mysql_server.query(SQL_STATEMENT), which queries
the server-side MySQL database engine. Mobile clients can also use rela-
tional databases, but of a different type, a browser-hosted SQL engine. Hence,
the database-related statement above should be replaced with a_mobile_engine(

SQL_STATEMENT). To identify such database-related statements, CWV instruments
all function invocations whose arguments are SQL commands by using
callback API of Jalangi. Despite the fragility of relying on the usage of SQL
commands, our approach presents a practical solution for supporting domain-
specific server-to-client migrations. Finally, CWV transforms the identified
entry/exit points at the client and server sides to insert the CWV functionality
with the local and remote vessels respectively that we explain in the next
section (Figure 2-(c)).

3.4 Transforming Programs to Enable CWV

CWV enhances application source code to enable its transformation as
follows.

3.4.1 Client enhancements
CWV transforms the identified HTTP invocation in the client program to be
able to CWV’s functionality as follow. The CWV-enabled client can operate
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and switch between these two modes: Original and Local. In Original mode,
the app operates the original remote execution and can switch to Local
mode by means of Insourcing. The Local mode designates that the local
version of the insourced remote functions is to be invoked and can revert
to the original mode by means of Reverting (See Figure 3). To switch to a
mode, the client invokes fuzzMode(mode) that simply fuzzes a certain parameter
of the HTTP command that invokes the original remote service name. For
instance, the client can dynamically fuzz a remote service "/a_service" (Orig-
inal Request) into "/a_service?CWVmode=Local" (Local). And the app initiates the
movement of the relevant remote server code and execution states rcwv to the
client by fuzzing the original invocation into "/a_service?CWVmode=Insourcing"

(Insourcing Request).

Insourcing CWV moves a set of received server statements into a client’s
container, referred to as the local vessel. Initially, the local vessel is empty.
When the client device determines to switch from the Original mode into
the Local mode, the app issues the Insourcing Request and then invokes the
moveToLocalVessel(rcwv) call, only then adding received server code and state
to the local vessel. The client and server share all the referenced names for
global entries added to the local vessels. To that end, CWV also adds a special-
purpose global object for the client, lcwv. This object is used for storing
functions and other JavaScript objects received from the server.2 Finally,
the app fuzzes the HTTP command into Local "CWVmode=Local" to change the
current mode. After that, invoking the rebalance() function compares the local
replica’s execution time with that of its original remote version.

Reverting If the local execution stops being advantageous, the app with
Local mode reverts to Original mode and clears the local vessel with
clearLocalVessel(), overriding the local vessel into the empty function again.
And then, the app switches the mode by fuzzing HTTP command into the
original mode.

3.4.2 Server enhancements
In a CWV-enabled app, the server part can operate in one of three modes
to respond the client’s requests: Original, Insourcing, and Local. With the
detected entry/exit points of a remote functionality, CWV transforms it to be
able to detect the mode switching queries and switch to the client-requested
modes. The Original mode refers to the original unmodified execution, with

2The properties of lcwv are the same as of the remote object rcwv
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the exception for the profiling of the time taken to execute the program
statements that implement business logic Tserver(fr) of the Equation (1).
The client uses resulting performance profiles to ascertain the current net-
work conditions RTTnet from the measured response time RT (fr). And
Tserver(fr) will be used to determine a threshold when to switch modes.

In the Insourcing mode, the server responds to the client’s special
insourcing query by serializing the relevant portions of a given remote
functionality into a JSON string. To that end, CWV calls saveSnapshot(fr),
whose invocation creates a snapshot of the remote functionality fr. CWV

adds to the server part a special-purpose global object, rcwv, which repre-
sents a remote vessel. This object’s properties contain the extracted func-
tions, rcwv.main, rcwv. ftns[0], · · · , rcwv.ftns[k] and their correspond-
ing saved states for global variables rcwv.gvars[0], · · · , rcwv.gvars[l].
To migrate fr with database dependent statements, CWV takes a snapshot
of database’s table in terms of SQL commands to enable restoration in
the client rcwv.sql[0], · · · , rcwv.sql[m]. To implement saveSnapshot(fr),
CWV instruments (1) the declarations of global variables and (2) Call Expres-
sions of embedded SQL statements extracted by the constraints solving
phrase. Finally, in the Local mode, the server executes no business logic,
but responds to periodic pings from the client. Based on the roundtrip time of
these pings, the client monitors the network conditions to detect if the Local
mode execution no longer provides any performance advantages and then
switches the app to the Original mode.

3.5 Updating Modes and Cutoff Latency

The transition diagram in Figure 3 shows how an app can transition between
different modes. CWV-enabled client always starts in the Original mode. An
insourcing request issued in the Original mode can be either fulfilled (i.e.,
switching to the Local mode) or declined (i.e., continuing to execute remotely
in the Original mode), with the latter incurring a large performance overhead.
To avoid this overhead, the system determines the optimal time window for
issuing “Insourcing Request” as soon as the app is automatically initialized
with a couple of original executions. The procedure that determines the
window is as follows. First, the client profiles both RT (fr) and Tserver(fr)
by means of multiple “Original Requests” during the initialization (Sec-
tion 3.4.2). After that, the procedure invokes the “Insourcing Request” and
extrapolates how much time it would take to execute the same business logic
locally Tclient(fr).
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Input: raw network delay RTTnetraw,
current mode m(k) and current cutoff τ

NET (k)
cutoff

Output: next cutoff τ
NET (k+1)
cutoff with a margin

and next mode m(k+1) for CWV-enabled Client
//Remove spike by adaptive Kalman Filter
RTTnet ← estimateRTT (RTTnetraw);
if RTTnetfiltered > τ

NET (k)
cutoff &&m(k) == Origin then

//Profiling the difference for execs T : rebalance

τ
NET (k+1)
cutoff ← T server(fr)− T client(fr);

//Set margin to the next cutoff condition
margin← (1− θ) · RTTnetfiltered;

τ
NET (k+1)
cutoff ← min(τ

NET (k+1)
cutoff ,margin);

m(k+1) ← Local;
end
if RTTnetfiltered τ

NET (k)
cutoff &&m(k) == Local then

//Set margin to the next cutoff condition
margin← (1 + θ) · RTTnetfiltered;

τ
NET (k+1)
cutoff ← max(τ

NET (k)
cutoff ,margin);

m(k+1) ← Origin;
end

Figure 3 Transition diagram for CWV-enabled client (left). Algorithm for updating cutoffs
and modes (right).

3.5.1 Estimating network delay
CWV-enabled mobile clients continuously monitor the underlying network
conditions. The client collects the RTTnet

raw metric that represents raw net-
work delay. Specifically, the client is continuously monitoring the RTTnet

raw

by subtracting T (fr) from RT (fr), which are obtained from the server.
Since the raw roundtrip is subject to sudden spikes [24], CWV filters out such
temporary fluctuations by applying an adaptive filter [30], which calculates
the covariance matrices and noise values for RTTnet

raw and then estimates the
RTTnet metric in Equation (1).

3.5.2 Cutoff network latency
The resulting difference between the local and remote execution times is used
as the threshold that determines when switching to the Local mode would
become advantageous from the performance standpoint. In other words, the
difference value is compared with the overhead of network communication,
and when the latter starts exceeding the former, the app switches to the
Local mode. We define this network condition as cutoff network latency,
τNET
cutoff . Thus, a CWV-enabled app obtains this threshold as soon as it start

executing, and then stays in the Original mode until reaching the cutoff. Then,
it tries switching to the Local mode. Because this request is executed only
upon reaching the cutoff, it is more likely to be fulfilled as offering better
performance.
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Since switching between modes incurs communication and processing
costs, frequent switching in response to insignificant network changes should
be prevented. To that end, the margin parameter expresses by how much the
network conditions need to change and remain changed. The algorithm in
Figure 3 explains how the margin and the current cutoff latency τ

NET (k)
cutoff

determine the next cutoff latency τNET (k+1)
cutoff . The margin parameter θ pre-

vents switching in response to insignificant τNET (k)
cutoff changes. After switching

to the Local mode, the app periodically pings the network to determine if
the current conditions are advantageous for reverting to the Original remote
mode. Figure 4 shows how applied filter removes the confusing noise. Com-
pare the ground truth and CWV’s switches, both the filter and the margin in
CWV are important to ascertain the major trends in the changes of network
delay.

3.5.3 Moving code before reaching a degraded network state
Notice that insourcing cannot be accomplished over a limited network.
Hence, the procedure needs to be initiated when the network conditions start
deteriorating, but before they have reached the point of becoming poor. Since
the conditions of a typical mobile network can fluctuate, going up and down,
the insourcing commences when the conditions degrade to a given threshold,
at which it is still possible to transfer the required source code and state from
the server to the client. After the insourcing, if the conditions deteriorate
further, the execution switches into the local mode; however, if they improve,
the insourcing is discarded, and the execution continues remotely.

Specifically, to detect the network degradation point, the CWV is mon-
itoring successive increases in RTTs, which are larger than RTTNET

limited, a
configurable parameter used to identify if the network is becoming limited.3

In terms of the actual operations, in the original mode, the app can receive
a transmitted code and state from the server at this network degradation point
with Insourcing Request. However, this transmission is not applied to the
local vessel by moveToLocalVessel until the cutoff point.

3.6 Synchronizing States

Some remote services can be invoked by means of HTTP POST, PUT,
DELETE, which are all state-modifying operations. Invoking an insourced

3We set its default value to 4 secs, the ping command’s default timeout.
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(a) Updates /bigtrip’s cutoff τ on different network conditions (τ (0)=224ms)

(b) Effects of Filter/Margin (θ=0.2) on mode switching for Fig.4 (a)’s scenario

Figure 4 Monitoring network conditions and adapting distribution.

stateful remote service locally modifies its state, which must be synchronized
with its original remote version via some consistency protocol.

Mobile apps are operated in volatile environments, in which mobile
devices become temporarily disconnected from the cloud server. To accom-
modate such volatility, CWV’s synchronization is based on a weak consistency
model. As an implementation strategy, we take advantage of a proven weak
consistency solution, Conflict-Free Replicated Data Types (CRDT), which
provide a predefined data structure, whose replicas eventually synchronize
their states, as the replicas are being accessed and modified. In CRDTs, the
concurrent state updates can diverge temporarily to eventually converge into
the same state, as long as the replicas manage to exchange their individual
modification histories [19].

Specifically, CWV wraps the replicated ‘database’ and ‘global variables’
of cwv objects into the ‘CRDT-Table’, and ‘CRDT-JSON’ of CRDT tem-
plates,4 respectively. To keep track of changes and resolve conflicts, these
CRDT-structures provide the API calls getChanges and applyChanges. By contin-
uously applying/transmitting the reported changes, the device-based clients
and the cloud-based server maintain their individual modification histories
and exchange them, thus eventually converging to the same state. To that end,
the cloud server periodically sends its state changes on rcwv to each client,

4https://github.com/automerge/automerge

https://github.com/automerge/automerge
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while each client starts sending its state changes on lcwv to the cloud server,
as soon as this client reverts to executing remotely.

3.7 Sandboxing Insourced Code

Whenever code needs to be moved across hosts, the move can give rise to
vulnerabilities unless special care is taken. The issue of insourcing JavaScript
code from the server to the client is security sensitive. Server-side code has
several privileges that cannot be provided by mobile browsers. In addition,
as it is being transferred, the insourced code can be tempered with to inject
attacks. Finally, the transferred segments of server-side database can be
accessed by a malicious client-side actor. To mitigate these vulnerabilities,
the insourced code is granted the least number of privileges required for it
to carry out its functionality. To that end, we sandbox the insourced code.
Specifically, CWV’s sandboxing is applied to the entire local vessel. The
insourced functionality has exactly one entry point through which it can
be invoked. The sandbox guards the insourced execution from performing
operations that require escalating privileges. Finally, because the insourced
database data cannot be accessed directly, malicious parties would not be
able to exfiltrate it.

As a specific sandboxing mechanism, we take advantage of iframe, which
has become a standard feature of modern browsers. An iframe creates a
new nested browser context, separate from the global scope. Operating in
a separate context precludes any shared state between the insourced code
and the original client-based code. In addition, HTML5 supports the sandbox

attribute to further restrict what iframes are allowed to execute.5 It protects the
client from the vulnerability related to client XSS. For instance, a sandboxed
iframe is prohibited from accessing window.localStorage[..].

4 Evaluation

Our evaluation seeks answers to the following questions:

• RQ1: – Redistribution Adaptivity for different Devices: How benefi-
cial is CWV’s redistribution for different mobile devices?

• RQ2: – Redistribution Adaptivity for Networks: How beneficial is
CWV’s redistribution and replication for different networks?

5https://developer.mozilla.org/en-US/docs/Web/HTML/Element/iframe

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/iframe
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• RQ3: – Energy Savings: How does CWV’s redistribution affect the
energy consumption of mobile devices?

• RQ4: – Overheads: When integrated with mobile apps, what is the
impact of CWV on their performance?

4.1 Device Choice Impact

4.1.1 Dataset
Our evaluation subjects are 23 remote services of 8 full-stack applications,
5 real-world full-stack mobile JavaScript applications, and 3 JavaScript
distributed system benchmarks [42]. These subject apps use different middle-
ware frameworks to implement their client/server (tier-1/-2) communication
and database (tier-3), with these frameworks being most popular in the
JavaScript ecosystem.

To that end, we searched the results based on combinations of keywords
for popular server and client HTTP middleware frameworks, curated by the
community. For server-side keywords, we used ‘Express’, ‘Restify’, etc.,
while for client-side keywords we used ‘Ajax’, ‘Angular’, etc. Table 1 sum-
marizes their names and the number of source files; 4 subject applications
contain database-dependent code. To answer RQ1, we tested how the intro-
duced network delays affect different devices. At launch time for each device,
CWV automatically calculates the cutoff network latency and applies it when
scheduling mode switches to minimize the switching overhead. For example,
CWV determined the cutoff network latency for the remote service “/hbone”
as 26ms for device 1 (D1) in Table 1, having profiled the execution time at
the server ( Tserver(“/hbone”)) and the client (TD1

client(“/hbone”)) as 14ms and
40ms, respectively. Device 1 is a Qualcomm Snapdragon 616 (8 × 1.5 GHz),
and Device 2 is an A8-iphone 6 (2 ×1.4 GHz); Device 1 outperforms Device
2. The server is an Intel desktop (i7-7700 4 × 3.6 GHz). We natively build
the subject web apps (JavaScript, html, and CSS) for iOS and Android by
using Apache Cordova, a cross-platform development framework. Table 1
demonstrates that the cutoff latency of Device 2 (τD2

cutoff ) is always larger

than that of Device 1 (τD1
cutoff ).

4.2 Network latency impact

To answer RQ2, we set up a test-bed for evaluating network latency impact
(See Figure 7-(a)). Even though, network latency can be changed by control-
ling RSSI levels, we change network conditions explicitly by means of an
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Table 1 Subject remote services
Subject (# of Files) Remote Services τD1

cutoff (msec) τD2
cutoff (msec)

Bookworm
(729 files)

/ladypet 176ms 421ms
/thedea 1120ms 2332ms
/thered 158ms 424ms
/thegift 97ms 120ms
/bigtrip 146ms 224ms

/offshore 619ms 1528ms
/wallp 146ms 458ms

/thecask 90ms 102ms

DonutShop
(4.9k files)

/Donut 0.66ms 1.54ms
/Donut:id 0.71ms 2.2ms

/Empls 0.55ms 1.33ms
/Empls:id 0.81ms 1.23ms

recipebook
(8k files)

/recipe 0.7ms 1.66ms
/recipe:id 0.68ms 1.1ms
/ingts/:id 0.82ms 2.3ms
/dirs/:id 0.75ms 2.1ms

pstgr-sql
(4k files)

/user 1.33ms 2.71ms
/user:id 1.72ms 2.92ms

chem-rules
2.8k files)

/hbone 26ms 59ms
/molec 131ms 202ms

benchmark in [42] (117 files)
str-fasta /str-fasta 656ms 1424ms
fannk /fannk 2576ms 4982ms
s-norm /s-norm 1896ms 4873ms

application-level network emulator.6 Then, we examine how CWV reacts by
redistributing the running applications. In these experiments, the server and
the mobile device are connected with a wireless router. We establish a high-
speed wireless link between the router and the device (−55 dBm or better).
By configuring the router to different delays, we simulate different network
conditions in the increasing order of delay. Our test-bed has a minimum delay
of about 100 ms for the simulator’s zero delay. Therefore, our starting point
is 100 ms, with the delays increased in the increments of 20 m, 50 ms, and
100 ms, based on the amount of cutoff network latency for each subject. For
each increment, we measure the average delay in the execution of our subject
applications (response time or responsiveness of a functionality), run in two

6https://github.com/h2non/toxy

https://github.com/h2non/toxy
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(a) /api/ladypet (b) /api/thedead (c) /api/offshore

(d) /api/thegift (e) /api/big (f) /api/wallpaper

(g) /string-fastaRepeat (h) /fannkuch (i) /spectral-norm

Figure 5 Client’s responsiveness comparison for different network latency. The cutoff
equals to τD1

cutoff in Table 1.

configurations: (1) the original unmodified version (Before), (2) dynamically
redistributed with CWV version (CWV). Figure 5 shows the performance
results.

Across all experimental subjects, the CWV-enabled configuration consis-
tently outperforms the original version, once the network latency surpasses
the cutoff network latency mark. Once the network delay reaches the cutoff
network, the difference in performance starts increasing by a large margin, as
accessing any remote functionality becomes prohibitively expensive. Before
reaching the cutoff network mark, the majority of CWV-enabled apps and
their original version exhibit comparable performance since two versions
are operated in remote execution. When operating over a high-speed net-
work, CWV-enabled apps remain in the original mode due to the remote
execution’s performance advantages. Some subjects consistently exhibit bet-
ter performance when executed locally. These subjects with their relatively
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(a) Testbed:Latency Control (b) Environment

Figure 6 Testbed and testing environments.

low utilization of server resources are better off not making any remote
invocations, as the overhead of network delays is not offset by the server’s
superior processing capacity.

4.3 Energy Consumption

Next, we evaluate how much energy is consumed by a mobile device execut-
ing CWV-enabled and original versions of the same subjects. To that end,
we use Qualcomm’s Trepn Profiler [1] to profile the energy consumption
of an Android device running the Snapdragon chipset. Trepn is a self-
metering profiler that dynamically generates power models, based on the
information collected from the device, thus requiring no pre-training of power
models [23].

We executed each subject 100 times and collected the profiled results
for battery power (mW). Figure 7 shows the obtained samples of the battery
power measurements over time.

To test the consumed energy under a real-world’s low speed network
environment, we placed the Android client device far from the wireless
router, so the signal strength level(RSSI) was −75 dBm. Figure 7 shows that
CWV always uses more power than the original version despite shortening
the execution time. Remote execution consumes no device power, even if
it takes much longer for the client to receive the results. By removing the
need to communicate with the server over low-speed high-latency networks,
our approach shortens the overall execution time. As the total consumed
energy is the product of the power and the elapsed time, our approach
consumes less energy 241.8J (2492 mW·97.05 sec) as compared to 266.3J
(1753 mW·151.92 sec) in the original remote version. Compared to the
original version, our approach improves energy efficiency by as much as
10.13% for poor network conditions.
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(a) /ingredients/:id (b) /str-f (�74J) (c) /thed (�24J) (d) /hbon (�31J)

Figure 7 Testbed and consumed energy.

This result is not unexpected, as a large RTT causes longer idle periods
between TCP windows [13]. Even tough, the device switches into the low
power mode during the idle states, the longer total execution time still causes
larger overall energy consumption.

4.4 Communication Overhead

To insource server execution, CWV serializes relevant code and state to
transfer and reproduce at the client. To evaluate the resulting communicating
overhead (RQ3), we compared the amount of network traffic during the
regular remote execution for unmodified version (Trreg) vs. the additional
traffic resulting from CWV insourcing server execution (Trcwv).

Among our subjects, the Bookworm app exhibits the largest of Trorig,
as this app’s remote services need to transfer not only the book content
but also the statistical information extracted from that content. Whereas, the
med-chem app shows the largest of Trcwv, as CWV needs to replicate about
10K server-side DB entries. However, the transmitting overhead is occurred
only once at initialization as these services are stateless. The resulting over-
all overhead ratio Trcwv

Trreg
turned out to be 2.4 on average for our subjects

(Table 2).
Among our subjects, the Bookworm app exhibits the largest of Trorig,

as this app’s remote services need to transfer not only the book content but
also the statistical information extracted from that content. Whereas, the med-
chem app shows the largest of Trcwv, as CWV needs to replicate all server-side
DB entries. However, the transmitting overhead is occurred only once at
initialization as these services are stateless. The resulting overall overhead
ratio Trcwv

Trreg
turned out to be 2.4 on average for our subjects (Figure 8). To

quantify the benefits of CWV’s insourcing transferring only the necessary
code and state, we also measured the overhead of the naı̈ve approach, which
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Table 2 Overhead comparisons of subject apps (KB)
Subjects Trreg Trcwv Naı̈ve
string-fst 0.38 1.3 374.0
fannkuch 0.37 0.99 375.0
spectral-n 0.39 1.3 375.2
recipe(4)Ψ 0.45 1.1 13k
Bookw(8) 42.0 15.8 2.4k
donut-s(4) 0.46 1.1 7.5k
med-c(2) 21.9 395 7.5k
Average 22.5 54.4 4154

Figure 8 CWV’s overhead.

transfers the entire server code and state to the client. The performance
overhead of transferring everything is about two orders of magnitude slower
than CWV, an unacceptable slowdown for any practical purposes (Figure 8).

4.5 Threats to Validity

Our evaluation is subject to both internal and external threats to validity that
we discuss in turn next.

4.5.1 Internal threats
We chose to perform all code analysis and transformation at runtime as an
implementation choice, even though some of these tasks could have been
performed offline. In other words, we could have transformed the client
code statically by adding to it the remote functions that might need to be
executed locally. In fact, such static code transformation would allow us to
take advantage of the advanced optimization capability of modern JavaScript
engines that remove the overhead of invoking constructors. Nevertheless, we
chose to transform the code at runtime for maximum flexibility at the cost
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of performance. One can further optimize our implementation by replacing
dynamic code migration with a separate post-compilation phase. Hence, our
evaluation numbers are reflective of the slowest possible implementation
strategy and do not unfairly characterize the efficiency of our approach.

4.5.2 External threats
To measure how much energy is consumed by Android devices, we utilize
the Snap dragon profiler, which follows a model-based procedure for esti-
mating energy consumption. If we were to use a power monitor instead,
our energy measurements could have differed. Nevertheless, when evaluating
energy consumption, our focus is the difference between the local and remote
execution of certain functionalities rather than their raw energy consumption
numbers. Hence, the obtained energy measurements are sufficient to answer
our evaluation questions.

When evaluating the impact of a device choice on the mode switching
points, we used two different mobile devices: Android and iOS. One could
argue that the actual execution environment of JavaScript mobile clients is
a mobile browser, whose execution is affected mainly by the underlying
device’s hardware components rather than the mobile platform. Indeed, as
we have observed, the actual cutoff points are heavily affected by the device’s
CPU speed, with the differences stemming from the device’s mobile platform
being quite modest.

Similarly to the mobile devices running the client, the server machine
running the remote functionality could also affect the resulting performance
and the mode switching calculation. The more powerful is the server machine,
the more advantageous it is to execute a functionality remotely, if at all
possible. The cutoff network latency is always higher for powerful server
machines, as the performance advantages of fast server execution can easily
subsume the sluggishness of transmitting over slow networks.

4.6 Applicability and Limitations

Our approach’s reference implementation works only with JavaScript source
code and SQL database code. Nevertheless, some mobile web applica-
tions are multilingual (i.e., written in different programming languages and
database query languages). Nevertheless, our key ideas and new technolo-
gies can be extended for multilingual distributed applications. As automatic
language translation has been entrenched into modern software develop-
ment [5] (e.g., transpiling TypeScript to JavaScript), integrating mature
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language translators with our infrastructure is mainly an engineering issue.
Furthermore, full-stack JavaScript applications are starting to dominate the
development landscape of distributed web applications, as their monolin-
gual nature lowers the development and maintenance burdens, requiring
programming proficiency in only JavaScript, used across the development
stack.

5 Related Work

5.1 Program Synthesis and Transformation

For a given remote service, CWV automatically identifies the relevant business
functionality that satisfies the client’s input and server’s output constraints. In
that respect, it can be seen as a variant of program synthesis [14–17, 21, 34],
an active research area concerned with producing a program that satisfies
a given set of input/output relationships. Recently, several techniques have
been introduced that automatically integrate portions of a program’s source
in another program [10, 18, 35, 39]. CodeCarbonReply [35] and Scalpel [10]
supporting this functionality for C/C++ programs. The programmer annotates
the code regions to integrate, and a tool automatically adapts the receiving
application’s code to work seamlessly with the transferred functionality. In
contrast, CWV is both fully automated and dynamic, integrating program code
and state at runtime. CanDoR [6] fixes the bug in the centralized variant
version with existing tools, then CanDoR applies the resulting fixes to the
original distributed app by using program transformation.

5.2 Adaptive Middleware

Several middleware-based approach has been proposed to reduce the costs
of invoking remote functionalities. APE [31] is an annotation based mid-
dleware service for continuously-running mobile (CRM) applications. APE
defers remote invocations until some other applications switch the device’s
state to network activation. Similarly, to reduce the overhead of HTTP
communication, HTTP requests in Android apps are automatically identified
and then bundled into a single batched network transmission [28, 29]. The
e-ADAM middleware [26] optimizes energy consumption by dynamically
changing various aspects of data transmission (e.g., encoding and compres-
sion). APE [31] defers remote invocations until some other apps switch the
device’s state to network activation. DR-OSGi [27] enhances middleware
mechanisms with resilience against network volatility. D-Goldilocks [8]
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adapts distributed web apps to adjust their distribution granularity to improve
both performance and invocation costs. CWV is yet another middleware, albeit
tailored for the realities of adapting mobile apps by transforming their code
at runtime.

5.3 Executing Code in a Mobile Browser

Ours is not the only approach that moves server-side components and data to
the client. Meteor [32], a JavaScript framework, transparently replicates given
parts of a server-side MongoDB database at the client, so these parts can be
used for offline operations. Browserify [2] enables a browser to use modulesin
the same way as regular Node.js modules at the server. WebAssembly [22]
provides portable low-level bytecode to execute components written in a
variety of programming languages in a browser. WebAssembly has been
enhanced with formal type and memory safety guarantees [22, 43]. Servers
and browsers execute code in dissimilar ways. For one, browser-based exe-
cution of JavaScript code is typically slower than server-based execution, as
browsers must handle event-callback functions in a strict sequential order.
RT.js [12] prioritizes the execution of browser-based real-time jobs within
the browser’s event queue, so they meet real-time timeliness constraints.

6 Future Work and Conclusions

Although CWV works well in the domain of full-stack JavaScript web applica-
tions, its applicability extends only to monolingual environments. To remove
this applicability constraint would require extending CWV to work in environ-
ments, in which distributed parts are written in different languages. Before a
vessel can execute an insourced functionality written in a different language,
the functionality has to be adapted for the vessel’s execution language and
environment. Common approaches to such adaptation are transpilation and
virtual execution, which we discuss in turn. Transpiler source-to-source trans-
lates source language statements into target language statements as they are
being interpreted. This execution strategy is typically used with languages
that lack their own execution environment. For example, TypeScript is tran-
spiled into JavaScript, immediately interpreted by the available JavaScript
interpreter. Universal Virtual Machines provide interoperability between lan-
guages via a shared runtime, thus obviating the necessity for source-to-source
translating the insourced code in different languages. With this approach,
CWV could generate a regular client vessel in a language different from that of
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the client. Then the insourced functionalities could be invoked via a Universal
Virtual Machine incorporated into a mobile browser.

This paper has presented Communicating Web Vessels (CWV), a dynamic
adaptation approach that improves the responsiveness of mobile web apps
under the ever-changing execution environment of the web. The CWV’s refer-
ence implementation offers full automation and a low performance overhead.
Through its powerful dynamic program analysis and transformation, CWV

correctly and efficiently adapts web apps for dissimilar execution condi-
tions by moving and replicating app functionalities across execution sites
at runtime. The realities of the mobile web will continue to be defined by
the fragmentation of the mobile device market and the necessity to operate
mobile devices over a variety of dissimilar mobile networks. If mobile apps
are to execute efficiently and reliably in the presence of these realities,
developers would need to create advanced software adaptations. We hope
that when creating these adaptations, developers would benefit from our
experiences with designing, implementing, and evaluating CWV.
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