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The Client Insourcing Refactoring and Its Applications to
Optimizing and Enhancing Distributed Execution

Kijin An

(ABSTRACT)

Developers often need to re-engineer distributed applications to address changes in re-
quirements, made only after deployment and usage. Much of the complexity of inspecting
and evolving distributed applications lies in their distributed nature, while the majority of
mature program analysis and transformation tools works only with centralized software.
Inspired by business process re-engineering, in which remote operations can be insourced
back in house to restructure and outsource anew, we bring an analogous approach to the re-
engineering of distributed applications. We introduce Client Insourcing, a novel automatic
refactoring that creates a semantically equivalent centralized version of a distributed appli-
cation. This centralized version can then be inspected, modified, and redistributed to meet
new requirements. We demonstrate the utility and value of Client Insourcing in optimizing
and enhancing distributed execution to meet the changed requirements in performance, re-
liability, and security. We realize the reference implementation of Client Insourcing in the
important domain of full-stack JavaScript applications, and apply our implementation to
re-engineer mobile web applications. The ultimate goal of this dissertation research is to re-
duce the complexity of inspecting and evolving distributed applications in order to facilitate
their re-engineering.
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1 Introduction

Developers often need to enhance distributed applications to address requirement changes
made only after deployment and usage. Re-engineering captures evolutionary modifications
that range from maintenance tasks to architecture-level changes [1, 9]. A re-engineering effort
can involve adding a major feature, protecting against security vulnerabilities, or removing
performance bottlenecks. Modifying existing distributed applications requires complex pro-
gram analysis and modification operations that are hard to perform and even harder to
verify. One of the main causes of this complexity is the distributed execution model of dis-
tributed applications. In this model, a distributed application’s execution flows across the
separate address spaces of its client and server parts. All remote interactions are typically
implemented by means of middleware libraries. As a result, the control flow of distributed ap-
plications can be highly complex, with their business and communication logic intermingled.
That complexity hinders all tracing and debugging tasks. In addition, distributed execution
over the network makes web applications vulnerable to partial failure and non-determinism.

Program analysis is central to software comprehension. The distributed application is pre-
dominated by dynamic languages, which defeat static analysis techniques. Hence, to compre-
hend programs written in dynamic languages, such as JavaScript, requires dynamic analysis.
Software debugging hinges on the ability to repeat executions deterministically [35, 38].
However, many distributed applications are stateful, with certain client server interactions
changing the server’s state. It can be quite laborious and error-prone to restore the original
state to be able to repeat a remote buggy operation [19, 31, 39]. All in all, it is the pres-
ence of both distribution and stateful execution that makes it so hard to trace and modify
distributed applications.

In this work, we draw inspiration from business process re-engineering that can bring re-
mote operations in-house via Insourcing. Once the insourced operations are redesigned and
restructured, some of them can be outsourced anew. As argued above, the notion of local
operations being easier to analyze and restructure than remote ones equally applies to dis-
tributed applications. Specifically, the approach presented herein first automatically trans-
forms a distributed application, comprising a client communicating with a remote server, to
run as a centralized program. The resulting centralized variant retains to a large degree the
semantics of the original application, but replaces all remote operations with local ones. The
centralized variant becomes easier to analyze and modify not only because it has no remote
operations, but also because the majority of program analysis and transformation approaches
and tools have been developed for centralized programs. After the centralized variant is mod-
ified to address the new requirements and the modifications have been verified, it is then
redistributed again into a re-engineered distributed web application. Our target domain are
distributed applications written entirely in JavaScript, both the client and server parts; such
applications are referred to as full-stack JavaScript applications. We take advantage of the
monolingual nature of such applications to streamline our implementation.
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To achieve the stated goals of this research, we propose to (1) create an automated
refactoring, Client Insourcing for the domain of full-stack JavaScript applications and apply
this refactoring to (2) to localize and fix bugs in web applications, (3) enhance and optimize
ill-conceived distributions of real-world apps by adjusting their distribution granularity, (4)
reconcile the design-time and run-time mismatch in cloud-based applications.

1. Creating the Client Insourcing Refactoring for Full-Stack JS Apps
The focal point of our approach is Client Insourcing, a new automatic refactoring
that undoes distribution by gluing the local and remote parts of a distributed full-
stack JS application together. Client Insourcing can precisely identify the function-
ality of HTTP middleware—irrespective of its API and in the presence of stateful
operations—by combining program instrumentation, profiling, and fuzzing in a novel
way. These HTTP middleware APIs tend to differ widely depending on their ven-
dor: the JavaScript ecosystem features numerous dissimilar distribution frameworks
and libraries. Rather than encoding domain-specific preconditions, our approach uses
domain agnostic semantic to identify the entry/exit points of middleware functionality.

2. Localizing and Fixing Defects in Web Applications
Localizing bugs in web applications is complicated by the potential presence of server/mid-
dleware misconfigurations and intermittent network connectivity. We introduce a novel
debugging approach to localizing bugs in distributed web applications. The debugged
application is converted to its semantically equivalent centralized version, thus separat-
ing the programmer-written code from configuration/environmental issues as suspected
bug causes. The centralized version is then debugged to fix various bugs. Finally, based
on the bug fixing changes of the centralized version, a patch is automatically generated
to fix the original application source files.

3. Correcting Ill-Conceived Distribution Granularity
Distributed applications enhance their execution by using remote resources. However,
distributed execution incurs communication overheads, if these overheads are not offset
by the yet larger execution enhancement, distribution becomes counterproductive. For
maximum benefits, the distribution’s granularity cannot be too fine or too crude;
it must be just right. We introduce a novel approach to re-architecting distributed
applications, whose distribution granularity has turned ill-conceived. To adjust the
distribution of such applications, our approach automatically reshapes their remote
invocations to reduce aggregate latency and resource consumption by means of a series
of domain-specific automatic refactorings.

4. Reconciling the Design and Runtime Mismatch in Mobile and Edge Apps
Communicating Web Vessels A mobile web app’s performance depends heavily on
the underlying network and the client device’s hardware capacity. Static distribution
allocates some application functionality to run on the client and some on the server,
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with the resulting allocation remaining fixed throughout the app’s execution. If the
available network and the client device mismatch those assumed during the static dis-
tribution, app responsiveness and energy efficiency can suffer. To address this problem,
we propose Communicating Web Vessels (CWV), an adaptive redistribution framework
that improves the responsiveness of full-stack JavaScript mobile apps. By monitoring
the network conditions, CWV determines whether a dynamic redistribution would im-
prove application performance. It then triggers a redistribution that moves server-side
functionalities to the mobile client and vice versa. When CWV moves server-side
functions and their reachable state to the client, they are invoked as regular local func-
tions. The moved functionalities are accessed remotely again as soon as the network
conditions improve.

Edge Insourcing Edge computing offers novel execution optimization opportunities,
however it would be non-trivial to adapt existing client/cloud apps to take advantage
of edge-based resources. We propose to extend the idea of Client Insourcing into Edge
Insourcing, a new refactoring technique that can automate such adaptation, offering
a unique technical perspective for solving this important problem of engineering edge
applications.

Proposal Structure: The rest of this Ph.D. preliminary proposal is organized as follows.
Section 2 presents the preliminary research we have accomplished. Section 3 discusses the
remaining work. Section 4 compares the proposed work with the state of the art. Section 5
outlines the research schedule and presents concluding remarks.

2 Preliminary Work

2.1 Client Insourcing Refactoring: JS-RCI

Approach We follow the software engineering methodology of creating a novel domain-
specific refactoring and demonstrating its value, applicability, and limitations through a
series of case studies of enhancing distributed application execution. Our new domain-specific
refactoring—Client Insourcing—is realized as a reference implementation, called JavaScript
Remote Client Insourcing (JS-RCI) [5].

JS-RCI integrates advanced software engineering techniques, such as program synthesis,
which identifies which application functionality satisfies a given remote execution’s input
and output relationship. JS-RCI also makes use of constraint solving to extract JavaScript
server-side functions. The constraint solving functionality is based on declarative logic-based
programming, which represents JavaScript program statements and their relationships to
each other as logical facts and predicates. As a specific example, consider the relationship



2. Preliminary Work 5

that expresses the transitive dependency across the statements, executed between the entry
and exit points of a remote service:
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One of the key functions of a middleware system is Marshaling and UnMarshaling meth-
ods for handling parameters and return values. Marshaling (exit point in server) converts
program values to a data format suitable for transmission; unmarshaling (entry point in
server) reverses the process by converting the transmitted data format to regular program
values. To determine such entry/exit points, JS-RCI instruments the app’s source code state-
ments, which implement HTTP commands, as well as applies advanced testing techniques
(e.g., fuzzing). Specifically, to identify these points with minimal false-negatives, JS-RCI
fuzzes the original HTTP traffic by padding the HTTP header and body data with random
data. Since many of these testing techniques requires that the subject be executed repeat-
edly in a deterministic way, JS-RCI also makes it possible for stateful servers to be executed
idempotently by automatically undoing their state changes. Overall process of JS-RCI is
shown in Figure 1.

Position
for Remote
Invocation

Extracted 
Remote 

Functionality

Equivalent
Centralized Code

AST Rewriter

Dependency 
Analysis(z3)

REQ/RES
Fuzzer

Record
REQ/RES

Entry/Exit 
Points

Fuzzing
HTTP Cmd

Record & Replay
REQ/RES traffics

Restoring
Init State

Re-Engineering

Normalization &
Instrumentation

Client

Server

Server

Client

Full-Stack 
JS App

REQ/RES
traffics

Client
JS Code

Server
JS Code

Database-dep Code

Figure 1: Client Insourcing Refactoring (JS-RCI)

Result We have successfully applied JS-RCI to numerous real-world apps that use differ-
ent middleware frameworks to implement their client/server (T1/T2) communication and
different third-party libraries for database operations (T3) as shown in the Figure 2.

We observed that Idempotent Execution (w/o IdEx) with its Record/Replay phases re-
moves the false-negatives in the detected marshaling points for stateful servers. In contrast,
Fuzzing (w/o Fuzz) removes false-positives for detecting marshaling points (Figure 3-(a)).
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Subjects
HTTPMethods Services C&P/M

(T1,T2,T3) (ULOC)

recipebook
(AngularJS,

Express,MySQL)

GET /recipes 22/45
GET/PUT/DEL /recipes:id 72/172
POST /ingts 25/48
GET/PUT/DEL /ingts:id 74/207
POST /directions 26/57
GET/PUT/DEL /directions:id 60/130

DonutShop
(Ajax,

Express,knex)

GET/POST /donuts 22/88
GET/POST/DEL /donuts:id 29/155
GET/POST /employee 20/71
GET/POST/DEL /employee:id 29/138
GET/POST /shops 16/83
GET/DEL /shops:id 19/128

res-postgresql
(axios,restify,

Postgres)

GET/POST /user 22/71
GET/PUT/DEL /user 40/120

shopping-cart
(Angular2,Express)

GET/POST/DEL /cart-items 79/130

realty_rest
(Angular2,Express)

GET/POST/DEL /prprts/favs 34/73
POST /prprts/likes 291/304
GET /prprts 284/297
GET /prprts:id 287/300

GET /brokers 86/99
GET /brokers:id 90/103

med-chem
(fetch,koa.js

,knex)

GET /hbone 9K/9K
GET /molecular 9K/9K

BrownNode
(AngularJS
,Express)

GET /u/search 37/65
GET /u/search/id 36/64

Bookworm
(JQuery,
Express)

GET /ladywithpet 394/409
GET /thedea 394/409
GET /theredroom 394/409
GET /thegift 394/409
GET /wallpaper 394/409
GET /offshore 394/409
GET /bigtripup 394/409
GET /amont 394/409

ConfApp
(Angular2
,Express)

GET /findpeakers 13/66
GET /findSpeaker 15/68
GET /findSessions 43/117
GET /findSession 46/119

Emp_Dir
(Angular2
,Express)

GET /employees 22/44
GET /employees/id 38/60

Total 61 24K/26K

Figure 2: Effort Saved by Client Insourcing

Client Insourcing creates a redistributable application variant that can be refactored and
enhanced using any state-of-the-practice program transformation tools and then distributed
anew using any state-of-the-art ditribution tools. We applied two JavaScript refactoring tools
on our centralized variants: Node-SandBox for security enhancements and extremeJS [52]
for redistribution. We measure the additional execution time incurred by sandboxing only a
subset of the remote functionality vs. the entire original remote functionality. This compar-
ison highlights the importance of isolating only the code that needs to be sandboxed. The
observed differences in execution time between these two versions are quite striking, clearly
showing that sandboxing the entire server part is impractical (Figure 3-(b)).

Subject State Data All w/o w/o
Apps -less -base Fuzz IdEx
BNode ✓ X 2/2 0/2 2/2
Bworm ✓ X 8/8 0/8 8/8
ConfApp ✓ X 4/4 4/4 4/4
EmpDir ✓ X 2/2 2/2 2/2
shopping X X 3/3 3/3 0/3
realty X X 8/8 6/8 2/8
recipe X ✓ 13/13 13/13 0/13
Donut X ✓ 14/14 14/14 0/14
r-post X ✓ 5/5 5/5 0/5
m-chem ✓ ✓ 2/2 2/2 2/2
Total 100% 80% 32%

(a) Correctness affected by Search Methods
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(b) Redistribution with Sandboxing
Figure 3: JS-RCI’s Value of Redistribution and Correctness
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2.2 Debugging Distributed Applications: CanDoR

Approach One application of Client Insourcing is to facilitate the debugging of distributed
apps. The underlying idea is to be able to debug the semantically equivalent centralized
variant of a faulty app (e.g., performance bottlenecks, memory leak). Our tool CanDoR [4]
creates a centralized app variant that can be debugged by means of the numerous existing
state-of-art debugging tools for centralized JavaScript programs. This refactoring preserves
the app’s business logic, while significantly simplifying its control flow. Rather than spanning
across two JavaScript engines (client and server), the resulting centralized apps require only
one engine (Figure 4). Once the programmer fixes the bug in the centralized variant version
with these tools, CanDoR applies the resulting fixes to the actual client and server parts of
the original distributed application. To that end, CanDoR automatically generates input
scripts for GNU Diff, which executes these scripts against the source files of the original full-
stack JavaScript application by using GNU patch. For certain types of bugs, this debugging
approach proves to be effective and reducing the required debugging efforts.
8 Kijin An and Eli Tilevich

//equivalent Centralized App
var users=[]; //insourced
function getObjsInArray(obj,

array){...} //Insourced(
buggy iterations)

function getUsers(searchUser)
{...} //Insourced

function users_search(i){
var out=getUsers(i);
return out;
} //Insourced

//$.ajax({url: ’/users/search
’,...}) is replaced by

var input = {fName:...};
var output=users_search(input);
$(’#results’).text(JSON.

stringify(output));

Client Server

c

(Remote Invocation)

c

Client
Insourcing

interpreterA

getUsers getObjsInArr

initVars

DisplayResult
interpreterA

Continuous
Local Control Flow

Centralized App

Interrupted
Local Control Flow

Interrupted
Remote Control Flow

getUsers getObjsInArr

initVars

DisplayResult

(Insourced
server codes)

intepreterB

Fig. 3: Continuous Control Flow of Distributed Codes(theBrownNode in Fig. 1) con-
structed by Client Insourcing(left: generated code for centralized applications)

can be challenging, particularly if the maintenance programmer, in charge of a
debugging task, is not the same programmer who wrote the original buggy code.
By transforming the original application into its centralized counterpart, Client
Insourcing creates a debugging subject with a regular local control flow that is
easy to follow with standard debugging tools (Fig. 3).

4.2 Catching and Fixing Bugs in Insourced Apps

Insourcing produces centralized applications that can be debugged by means of
any of the existing or future JavaScript debugging techniques. CandoR makes
all these state-of-the-art debugging techniques immediately applicable to full-
stack JavaScript applications. Automatically produced equivalent centralized
versions are easier to execute, trace, and debug, due to their execution within
a single JavaScript engine. Next, we explain how CandoR can help remove
performance bottlenecks and memory leaks.

Identifying and Removing Performance Bottlenecks The interpreted,
scripting features of JavaScript make the language a great fit for rapid pro-
totyping tasks. Unfortunately, deadline pressures often leads to programmers
having to move such prototyped code into production. Once deployed in actual
execution environments, this code frequently suffers from performance problems.
Several previous works address the challenges of uncovering non-trivial recurring
cases of performance degradation in JavaScript applications [?,?,?]. For example,
reference [?] identifies 10 common recurring optimization patterns: 2 inefficient
iterations, 6 misused JavaScript APIs, and 2 inefficient type checks. One can find
these patterns statically by analyzing a JavaScript codebase. Notice that static
analysis can be applied separately to the client and server parts of a full-stack
JavaScript application. However, applying the Pareto Principle [?] to program

Figure 4: Continuous Control Flow of Distributed Codes constructed by Client Insourcing

Result CanDoR reduces the complexity of debugging distributed apps. It makes it possible
to debug the app’s business logic locally, so the app can be executed repeatedly, with the
debugging output examined in place. As a result, the required debugging effort decreases.
For example, CanDoR reduces the time taken to execute a debugged functionality by more
than 90% on average. Given that debugging typically involves repeated execution, having
much faster subjects to debug improves the the debugging process’s efficiency.
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Figure 5: Regression Test for ∆Tdist vs. ∆Tcent

To demonstrate the value of CanDoR, we
removed 11 performance bottlenecks from
both the original subjects and their cen-
tralized variants. As it turns out, the
bottleneck removals improved the perfor-
mance of both versions (distributed and cen-
tralized) of each subject. Figure 5 sum-
marizes the observed performance improve-
ments. For the original distributed sub-
jects (∆Tdist), the improvements range be-
tween 29.5% and 2.0%. For their central-
ized variants (∆Tcent), the improvements
range between 34.8% and 1.6%. We also
applied a linear regression analysis to com-
pute how closely ∆Tdist and ∆Tcent corre-
late with each other, resulting in ∆Tcent =
1.0089 ∗ ∆Tdist + 1.556. This equation
shows that ∆Tcent and ∆Tdist are almost perfectly correlated, so centralized variants can
indeed serve as reliable and convenient proxies for an important class of performance debug-
ging and optimization tasks.

2.3 Optimizing Remote Execution Granularity: D-Goldilocks

Approach Another application of Client Insourcing is restructuring the distribution of web
apps to maximize their performance and efficiency. Our approach, named D-Goldilocks [6],
follows the Goldilocks Principle [13, 22] to maximize the benefits of distribution. That is,
the granularity of a remote service should not be too fine or too crude; it must be just right.
For instance, the granularity of Bookworm is too crude as shown in Figure 6-(a).

D-Goldilocks re-architects distributed web apps to adjust their distribution granularity
as a means of improving performance and efficiency. To that end, using a semantically
equivalent centralized application variant, D-Goldilocks profiles the variant’s performance,
with the following cost function C(r), determining how to reshape the original distribution
r to improve performance and efficiency.

C(r) = α · latency(r) + (1− α) ·
∑

resource(r).

Extant automatic refactorings (e.g., partition and batch) are then applied to reshape and
redistribute the original remote functionality into a service with a changed granularity. In
the end, D-Goldilocks identifies a distribution that minimizes the C function (Figure 6-(b)).
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Figure 6: D-Goldilocks for Optimizing Remote Execution Granularity

Result D-Goldilocks saves programming effort by automatically reshaping the granularity
of the remote functionalities of web apps. To to determine what the optimal combination
of functions is, D-Goldilocks generates all possible combinations of individually invoked
functions. For some subjects, D-Goldilocks can save almost 1.6× 106 lines of code required
to discover the optimal granularity. Splitting a singe long-running remote function into a
small number of asynchronously invoked parts decreases both the aggregate latency and cost.
However, as the number of partitions grows, so does the cost, due to the increasing overhead
of invoking multiple remote functions (Figure 7).
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3 Remaining Work

The remaining work of this dissertation will apply Client Insourcing to adapt distributed
applications for their execution environments at runtime and to transform two-tier cloud-
based applications to take advantage of edge computing resources. We describe these two
remaining work thrusts in turn next.

3.1 Adapting Web Execution at Runtime: CWV

Approach To achieve the best performance for all combinations of client and server devices
and network connections, a web app would have to be distributed in a variety of versions.
My ongoing research is concerned with adaptively redistributing functionalities of a full-
stack mobile JavaScript app to optimize its performance and energy consumption. We have
been working on a new framework, Communicating Web Vessels (CWV). In a CWV-enabled
web app, the client dynamically instruments and monitors app’s distributed execution for
“/service_r”. In response to a deterioration in network conditions, the client can request that
the server-side JavaScript code and program state of a remote service be moved to the client,
so the service can be invoked locally as a regular function call (insource(‘‘/service_r”)).
When the network conditions become favorable, the moved service starts to be invoked
remotely again (revert(r)). Invoking remote services locally or remotely helps achieve the
best possible response time of the web app under the current network conditions. The
CWV’s communication protocol defines how and when an app switches between the Original,
Insourcing/Reverting, and Local modes.

Result so far Preliminary results for CWV show that it effectively adapts web apps for
dissimilar networks and two different mobile devices. CWV offers a low performance over-
head, so CWV-enabled apps improve their responsiveness by adapting to the current runtime
conditions. Table demonstrates that the cutoff network latency of Device 2 (τD2

cutoff ) is al-
ways larger than that of Device 1 (τD1

cutoff ) to minimize the mode switching overhead. Also,
these switching points reflect the device processing capacity: Device 1 is about two times
faster than Device 2 for running JavaScript code on a CWV-enabled client. CWV’s runtime
takes into account the client device’s processing capacity in addition to the current network
conditions.

CWV-enabled web apps can also improve their energy efficiency by as much as 10% for
poor network conditions. As the longer total execution time still causes larger overall energy
consumption even though the device switches into the low power mode during the idle states.
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3.2 Edge Insourcing

Cloud-based execution makes it possible to take advantage of superior remote computing
resources, thereby improving performance. Consider how cloud computing is used to train
machine learning (ML) models on sensor data collected by mobile devices. Mobile and
IoT devices feature multiple sensors, used to collect various types of data. This data then
is passed as input for training ML models. The resulting models can then be used to
optimize and specialize the execution of mobile devices. Since ML model training is a
computationally intensive task, taking advantage of powerful cloud computing resources can
improve performance. However, as the number and variety of mobile and IoT devices has
drastically increased, so has the volume of resulting sensor data, referred to as sensor data
deluge [47]. It is due to this development, transferring all the collected sensor data to a
cloud-based server for processing becomes disadvantageous due to the network transmission
bottlenecks. As a solution to this problem, edge computing makes it possible to train ML
models locally, so the collected sensor data would not need to be transmitted to the cloud.

To take advantage of edge processing resources, edge applications can be developed from
scratch, an expensive software development task. Another more efficient approach is to mod-
ify existing cloud-based applications to integrate edge-based processing. In other words, 2-
tier (cloud-device) applications would need to be transformed into 3-tier (cloud-edge-device)
applications. This transformation can be quite laborious and intellectually tiresome to per-
form by hand. To facilitate this transformation, we will create a new domain-specific refac-
toring, Edge Insourcing. This refactoring will take advantage of Client Insourcing but will
also introduce its own edge-specific transformations.

Adapting Cloud-Based Code for the Edge: The computing resources of the cloud and
the edge differ widely. While cloud resources are powerful and abundant, edge resources
are limited and scarce. Hence, cloud-based code cannot be directly insourced to the edge,
but it must be properly adapted to consume fewer edge-based resources. To that end, the
proposed research will insource only those server-based functionalities that are determined
to be failure-resistant. We notice that much of server-based processing handles various
erroneous inputs and failed operations. The code responsible for such processing would
remain cloud-based, but the rest of server-based functionality can be insourced to executed
on edge-based devices. In those cases in which edge-based execution fails, the required failure
handling will be offloaded to the cloud.

Formally Verifying the Correctness of Edge Insourcing: Recently the program ver-
ification community has made significant inroads in formally verifying the correctness of
distributed systems [23, 27, 45, 53]. By leveraging this work, we plan to prove that Edge
Insourcing preserves application semantics. The proof strategy would require modeling both
distributed and insourced executions and comparing their respective output.

In the envisioned distributed architecture, edge nodes would serve as processing and
forwarding proxies for cloud nodes (Figure 8). Initially, all the processing functionality will
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be hosted by the cloud nodes. An edge node would be able to issue a special insourcing
request to a cloud node, receiving some program code and state to execute locally. The
state will be synchronized between the edge and cloud nodes based on a relaxed consistency
model, as allowed by different application scenarios.

4 Related Work

Improving various aspects of distributed application execution has been the target of nu-
merous prior research efforts. Since our work applies novel software engineering approaches,
techniques, and tools, we limit our coverage of the related state of the art to this area.

Our reference implementation of Client Insourcing, relates to advanced program anal-
ysis techniques for JavaScript, due to its target domain—cross-platform mobile applica-
tions. Our approach follows declarative program analysis frameworks that statically analyze
JavaScript code by means of a constraints solver [20, 30, 34, 49]. The JavaScript language
constructs for programming event-based applications that wait for dispatches events or mes-
sage asynchronously. Some advanced static analysis approaches apply formal reasoning for
callback and promises of web apps based on a calculus [36, 37]. Existing dynamic analysis
tools [30, 43] have a scalability problem to analyze entire JavaScript program. Dynamic
symbolic execution (DSE) symbolically executes a JavaScript program by applying concrete
input values [41] for a faster analysis. For more advanced DSE, MultiSE [44] uses a value
summary in Jalangi2 to effectively generate testing input values of a JavaScript program to
speed up dynamic symbolic execution.

In JavaScript, choosing one programming implementation over another can make a signif-
icant difference performance effect on the overall application [17, 18]. An approach presented
in [42] empirically identified reappearing patterns of inefficient JavaScript programs in open
source community, so common performance bottlenecks can be automatically detected and
fixed by using software engineering techniques.
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Some prior approaches automatically change the locality of execution in existing appli-
cation, a highly complex process, as centralized and distributed execution models differ
from each other in terms of their respective latency, concurrency, and failure modes [51].
Researchers and practitioners have greatly studied to facilitate the task of rendering lo-
cal functionalities remote to take advantage of remote resources. For example, offloading
local functionality to the cloud has also been supported as an automated refactoring tech-
nique [24, 25, 52, 54].

Client Insourcing can be seen as a variant of program synthesis [8, 10, 11, 12, 14, 15, 21, 46],
an active research area concerned with producing a program that satisfies a given set of
input/output relationships. CodeCarbonReply and Scalpel [7, 48] integrate portions of a
C/C++ program’s source in another C/C++ program by leveraging advanced program
analysis techniques. The programmer’s effort is only limited to annotate the code regions to
integrate, and then the tool automatically adapts the receiving application’s code to work
seamlessly with the moved functionality. Client Insourcing belongs to a category of refactor-
ing transformations that change the locality of application components for various reasons.
One prominent direction in this research is application partitioning, which is an automated
program transformation that transforms a centralized application into its distributed coun-
terpart [7, 32, 33, 48, 50]. Another approach that leverages compiler-based techniques is the
ZØ compiler [16], which automatically partitions CSharp programs into distributed multi-
tier applications by applying scalable zero-knowledge proofs of knowledge, with the goal of
preserving user privacy.

Several middleware-based approach has been proposed to reduce the costs of invoking
remote functionalities. APE [40] is an annotation based middleware service for continuously-
running mobile (CRM) applications. APE defers remote invocations until some other ap-
plications switch the device’s state to network activation. Similarly, to reduce the overhead
of HTTP communication, events for HTTP requests in Android apps are automatically are
bundled into a single batched network transmission [28, 29]. The e-ADAM middleware [26]
optimizes energy consumption by dynamically changing various aspects of data transmission
scheme. My approach can also adapt the realities of executing full-stack JavaScript mobile
apps to optimize the remote execution with a cost function.

5 Schedule and Conclusion

The preliminary work is published in conferences, such as the Web Conference (WWW),
IEEE International Conference on Software Analysis, Evolution & Reengineering (SANER),
and the International Conference on Web Engineering (ICWE). Many people provided help-
ful feedback on my dissertation topic presented in two doctoral Symposium papers in ICWE
and WWW. I also contributed to two projects, unrelated to my dissertation research, whose
results were published. I am the first author in a paper in MobileSoft and the second au-
thor both in the ACM SIGPLAN International Conference on Generative Programming:
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Concepts & Experiences (GPCE) and the Journal of Computer Language (Table 1).

No. Paper Conference Area Authorship
1. Client Insourcing [5] Web Conference 2020 (19%, 217/1129) Web Engineering 1st author
2. D-Goldilocks [6] SANER 2020 (21%, 42/199) Software Engineering 1st author
3. CanDoR [4] ICWE 2019 (25%, 26/106) Web Engineering 1st author
4. Project1-paper1 [3] MobileSoft 2018 (Nominated for Best Paper award) Software Engineering 1st author
5. Project2-paper1 [32] GPCE 2018 (Invited to Journal Extension) Software Engineering 2nd author
6. Project2-paper2 [33] Journal Of Computer Language 2020 Software Engineering 2nd author
7. PhD Symposium1 [1] ICWE 2019 Web Engineering 1st author
8. PhD Symposium2 [2] Web Conference 2020 Web Engineering 1st author

Ongoing Comm Web Vessels Submitted to ICDCS 2020 Distributed Systems 1st author
Ongoing Edge Insourcing To be Submitted Distributed Systems 1st author

Table 1: Publication Records in PhD Course
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We intend to target distributed systems or software engineering venues to publish the
remaining work. Figure 9 outlines the proposed schedule for the remaining work outlined in
this document.
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Figure 9: Proposed Work Schedule

The ever-changing realities of modern distributed apps put new obstacles on the road of
providing a satisfactory user experience. In particular, modern users expect distributed ap-
plications to be responsive, reliable, and energy efficient. Distributed application developers
need powerful approaches, techniques, and tools that allow them to reach these objectives
on time and under budget. This dissertation research innovates in the software engineer-
ing space to create novel automated reengineering approaches that enhance and optimize
distributed execution. In particular, we introduce a novel domain-specific refactoring, sup-
ported by state-of-the-art program analysis and transformation techniques, and apply this
refactoring to address some of the most salient problems of distributed execution. This
research contributes to the development of development approaches, techniques, and tools
with novel designs, new technologies, and strong potential for practical adoption.
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