
KIJIN AN web: https://kjproj84.github.io ankijin@vt.edu

Research Statement
KIJIN AN

My research focuses on the System ends of Software Engineering to support the development
and evolution of distributed systems and apps. Actively used software apps must be changed con-
tinuously to ensure their utility, correctness, performance, safety, etc. To perform these changes,
programmers spend a considerable amount of time and effort pinpointing the exact locations in the
code to modify, a particularly hard task for distributed apps. My dissertation research is concerned
with facilitating the evolutionary modifications of distributed apps, including apps of machine learn-
ing, via automatic and architectural refactorings. By flexibly changing the application architecture,
with different functionalities becoming local or remote at will, programmers can more easily per-
form various kinds of perfective and adaptive modifications. I have published 23 peer-reviewed
conference/journal papers, with one best paper award and two best paper nominations.

Before commencing my Ph.D. studies, I worked as a researcher in Korea Institute of Science and
Technology (KIST), one of the top research institutions in South Korea. Much of my work there
focused on distributed systems for interactive robot services, a project with a $5 million budget,
executed according to a rigorous delivery and evaluation schedule. During the three years of my
involvement in this project, I contributed novel research results, published in 10 research papers,
and used as proofs of feasibility for two large successful funding proposals. The project received the
prestigious government award, having been selected as the Industry Technology of the Month.

For my Master’s in POSTECH, I was a key contributor to the research project that implemented
a Sensor Network’s protocol using an actor-oriented framework (DGIST, UC Berkeley). Based on
the successful completion of this work, we received another research grant to create a location recog-
nition system (DGIST). I also participated in several proposals in SK telesys, where I was a network
systems engineer, responsible for developing commercial 3·4G·WiFi and VoIP productions.

……… ……

• Phrase1: Identify Entry/Exit Points of Remote Functionality

Centralized
Variant

Distributed
Apps

Client Insourcing Refactoring [WWW 2020]

Server

Client

12

Restoring
Init State

Fuzzing
HTTP msg

Dynamic
Analysis

HTTP
Traffics

Constraints
Solver (z3)

Generate
Program Facts

Un/Mar Rules
Stmt Dep Rules

Query Extract
Function

Query Un
-/Mar Points

Client
JS Code

Remote
Exec Local

calls

Client Insourcing
Refactoring

Server’s
Program

Client’s
Program

Figure 1: Client Insoucing Refactoring

Dissertation Work: Automated Architectural Refac-
toring and Its Applications My dissertation research is
concerned with creating novel automated program transfor-
mations that enhance the execution of web apps. Refactoring
is a program transformation that changes the source code of
an app while preserving its semantics. The key novelty of
this research is a novel domain-specific refactoring—Client
Insourcing—that transforms a distributed app into its se-
mantically equivalent centralized variant, in which the re-
mote parts are glued together and communicate with each other by means of regular function calls.
The equivalent variant is then for adaptive and perfective modifications and subsequent automated
redistribution, thereby enhancing app execution, with a particular emphasis on performance, en-
ergy efficiency, and reliability [1, 2]. Rather than encoding domain-specific preconditions, our ap-
proach uses domain agnostic semantic to identify the entry/exit points of middleware functionality.
The main work was presented in theWebConf 2020 [4] (19%, 217/1129).

Rul
es
!"#"!$% &'(') , &'('+ ←

-$". &'('), /)
∧ 123#$ &'('+, /)

!"#"!$% &'(') , &+
>> &)

Query

RW for REQ/RES
invokeFunc

;;Read/Write Facts

(Un)/Marshal	Point
SQL	Invocation

à
Detect

Entry/Exit
Points

R"2 /_T=“WXYX”;
T\\. ^_'(“/`ab”,	
function(req,res){..

R"2 /_e=/_T;
res.json(v_b);

});

à
Extract

Function
/Database

Constraint
Solver(z3)

à

à

Original/
Jalangi

instrument

Instrument
HTTP Traffic

RW for REQ/RES
invokeFunc

Server

1. Decode {client-parameter, server-return} by capturing HTTP traffics
2. Instrument code parts that RWs these values

HTTP
Traffics

CWV-enabled
App

Dependency
Analysis

;;Analysis Rules

Extract
Function

PointTo
Analysis

Dependency
Analysis

;;Analyze Program
from Rules

Remote
Vessel Local

Vessel templates

Server
/Client
Code

Facts for
Program

(b) Generate CWV Obj (solving constraints)

CWV
ObjClient

Analyzing
HTTP traffic

(a) Identify marshaling points (b) Transform Original Program

Detect Un/
Marshal

Generate
CWV Obj

Generating
CWV Obj

Save
SnapShot

Figure 2: Communicating Web Vessels

Adapting Web Execution at Runtime: ICWE 2021 Best
Paper Award: A mobile web app’s performance depends
heavily on the underlying network and the client device’s
hardware capacity. Static distribution allocates some ap-
plication functionality to run on the client and some on
the server, with the resulting allocation remaining fixed
throughout the app’s execution. If the available network and
the client device mismatch those assumed during the static
distribution, app responsiveness and energy efficiency can suffer. To address this problem, we pro-
pose Communicating Web Vessels (CWV) [6], an adaptive redistribution framework that improves
the responsiveness of full-stack JavaScript mobile apps. By monitoring the network conditions,
CWV determines whether a dynamic redistribution would improve application performance. It
then triggers a redistribution that moves server-side functionalities to the mobile client and vice
versa. When CWV moves server-side functions and their reachable state to the client, they are in-
voked as regular local functions. The moved functionalities are accessed remotely again as soon as
the network conditions improve. This work presented in ICWE 2021 (17%, 22/128).

Page 1 of 3

KIJIN AN web: https://kjproj84.github.io ankijin@vt.edu

36

Initial
Distribution

Batching*
Remote

Invocation

Batching
Parameter

Sets
Independent
Sub-function

Client
Insourcing

(z3 Solver)

Centralized
Variant

(Headless Browser
Testing framework)

Partitioning

Distribution
Costs

Templates
(Remote

façade, DTO)

getVoc

Too Small
Distribution

“Right”
Distribution

GetC

GetSen GetDial

getCol

getVoc GetC
GetSen GetDial

getCol

getVoc GetC

GetSen
GetDial

getCol

Too Much Distribution

(Initial Version)

CD1
CD2

…

CDN

Figure 3: Correcting Dist. Granularity

Correcting Ill-Conceived Distribution Granularity for
Cloud Services: Distributed applications enhance their
execution by using remote resources. However, dis-
tributed execution incurs communication overheads, if
these overheads are not offset by the yet larger execu-
tion enhancement, distribution becomes counterproduc-
tive. For maximum benefits, the distribution’s granular-
ity cannot be too fine or too crude; it must be just right.
We introduce a novel approach—D-Goldilocks [5]— to re-
architecting distributed applications, whose distribution granularity has turned ill-conceived. To
adjust the distribution of such applications, our approach automatically reshapes their remote in-
vocations to reduce aggregate latency and resource consumption by means of a series of domain-
specific automatic refactorings. This work was presented in SANER 2020 (21%, 42/199).

Efficient Bug Fixing in Distributed Apps: We introduce a novel debugging approach to localiz-
ing bugs in distributed applications in ICWE 2019 [3]. The debugged application is converted to its
semantically equivalent centralized version with Client Insourcing, then this variant is debugged
to fix various bugs. Finally, based on the bug fixing changes of the centralized version, a patch is
automatically generated to fix the original application source files.

Please find the detail of my work in: https://kjproj84.github.io/publications.
Future Research Plans The automated software analysis and transformation toolset created by
my dissertation research has a range of applications that can help solve some of the most salient
problems faced by the modern computing ecosystem. Although edge computing is seen as an enabler
of the next iteration of software technologies, including IoT, autonomous driving, and smart houses,
integrating edge computing and storage resources is strewn with complex challenges. I am looking
forward to applying my research expertise and skills to address these challenges. One of my ongoing
research efforts focuses on integrating edge-based computing and storage resources into existing
distributed systems by replicating cloud services at the edge.

Replicating Cloud Services (e.g. machine learning) at the Edge: To take advantage of edge com-
puting, two-tier client-cloud apps need to be transformed to three-tier client-edge-cloud apps. (e.g.
detecting objects of transmitted images in cloud by using deep learning) Such transformations are
hard for programmers to perform correctly by hand. Many cloud services maintain runtime state
that needs to be replicated at the edge. Once replicated, this state must then be synchronized ef-
ficiently and correctly. To facilitate the transition to edge computing, my research explores how to
automatically transform client-cloud apps to their client-edge-cloud versions. My approach auto-
matically replicates cloud-based services at the edge by synchronizing state via generated Conflict-
Free Replicated Data Types (CRDT). CRDT provide strong eventual consistency, so each replica
executes at full speed. By keeping and exchanging histories of state mutations, replicas eventually
converge to the same state, even if the network temporarily disconnects.

Applying advanced program analysis and transformation techniques can not only enable fast,
energy-efficient, and privacy-preserving computation and storage at the edge, but can also help
solve problems that commonly occur in the engineering of other modern distributed systems. I am
looking forward to applying my technical expertise and research experience to produce innovative
solutions to these problems.

References
[1] Kijin An. Facilitating the evolutionary modifications in distributed apps via automated refac-

toring. In Web Engineering, pages 548–553. Springer International Publishing, 2019.

[2] Kijin An. Enhancing web app execution with automated reengineering. In Proceedings of the
Web Conference 2020, 2020.

[3] Kijin An and Eli Tilevich. Catch & release: An approach to debugging distributed full-stack
JavaScript applications. In ICWE, pages 459–473, 2019.

[4] Kijin An and Eli Tilevich. Client insourcing: Bringing ops in-house for seamless re-engineering
of full-stack JavaScript applications. In Proceedings of the Web Conference, 2020.

Page 2 of 3

https://kjproj84.github.io/publications

KIJIN AN web: https://kjproj84.github.io ankijin@vt.edu

[5] Kijin An and Eli Tilevich. D-Goldilocks: Automatic redistribution of remote functionalities
for performance and efficiency. In Proceedings of the 27th IEEE International Conference on
Software Analysis, Evolution and Reengineering (SANER), 2020.

[6] Kijin An and Eli Tilevich. Communicating web vessels: Improving the responsiveness of mobile
web apps with adaptive redistribution. In ICWE, 2021.

Page 3 of 3

