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The Client Insourcing Refactoring to Facilitate the Re-engineering of
Web-Based Applications

Kijin An

(ABSTRACT)

Developers often need to re-engineer distributed applications to address changes in require-

ments, made only after deployment. Much of the complexity of inspecting and evolving dis-

tributed applications lies in their distributed nature, while the majority of mature program

analysis and transformation tools works only with centralized software. Inspired by business

process re-engineering, in which remote operations can be insourced back in house to restruc-

ture and outsource anew, this dissertation brings an analogous approach to the re-engineering

of distributed applications. Our approach introduces a novel automatic refactoring—Client

Insourcing—that creates a semantically equivalent centralized version of a distributed appli-

cation. This centralized version is then inspected, modified, and redistributed to meet new

requirements. This dissertation demonstrates the utility of Client Insourcing in helping meet

the changed requirements in performance, reliability, and security. We implemented Client

Insourcing in the important domain of full-stack JavaScript applications, in which both the

client and server parts are written in JavaScript, and applied our implementation to re-

engineer mobile web applications. Client Insourcing reduces the complexity of inspecting

and evolving distributed applications, thereby facilitating their re-engineering.



The Client Insourcing Refactoring to Facilitate the Re-engineering of
Web-Based Applications

Kijin An

(GENERAL AUDIENCE ABSTRACT)

Modern web applications are distributed across a browser-based client and a remote server.

Software developers need to optimize the performance of web applications as well as correct

and modify their functionality. However, the vast majority of mature development tools,

used for optimizing, correcting, and modifying applications work only with non-distributed

software, written to run on a single machine. To facilitate the maintenance and evolution

of web applications, this dissertation research contributes new automated software trans-

formation techniques. These contributions can be incorporated into the design of software

development tools, thereby advancing the engineering of web applications.
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Chapter 1

Introduction

The majority of modern computing applications are distributed in some way. A distributed

computing application executes on different machines, connected to each other via a net-

work. A distributed application’s execution flows across the separate address spaces of its

constituent parts that execute on different machines. One of the most common distributed

architectures is client-server, in which the client remotely invokes services at the server,

which executes them returning the results to the client. Distribution assigns which applica-

tion component should run on which machine. Some distribution strategies are predefined;

for example, user interfaces must display on the client, while a shared database must be

placed on the server. Other distribution strategies aim at improving performance; for exam-

ple, a powerful cloud-based server can execute some functionality faster than can a mobile

device. Various middleware libraries and frameworks streamline the implementation of the

remote interactions across the different parts of a distributed application.

As is the case for all software systems, developers commonly need to re-engineer distributed

applications after deployment and usage. Re-engineering broadly captures evolutionary mod-

ifications that range from routine maintenance tasks to architecture-level changes [4, 14].

A re-engineering task can be as straightforward as fixing a bug, or can involve complex

modifications that add a major feature, protect against security vulnerabilities, or remove

performance bottlenecks. When performing re-engineering tasks, developers make use of

various software tools—profilers, debuggers, refactoring browsers—commonly included with

1



2 CHAPTER 1. INTRODUCTION

modern Integrated Development Environments (IDE).

There is a major disconnect between modern software applications and mature software re-

engineering tools. While most of modern applications are distributed, most of the widely

available re-engineering tools are designed to work with centralized software, written to run

on a single machine. Although some of these tools can be applied to distributed applications

by treating their constituent parts as separate centralized applications, many of them fall

short of fully addressing the whole range of re-engineering tasks that may need to be per-

formed on modern distributed applications. For example, running a debugger only on the

client part of a web applications may be insufficient to uncover certain performance bugs.

Consequently, there is great potential benefit in creating software re-engineering tools that

can support the unique characteristics of distributed applications.

This dissertation improves the state of the art in re-engineering distributed applications

by introducing a novel software refactoring—Client Insourcing. We draw inspiration from

business process re-engineering that can bring remote operations in-house via Insourcing.

Once the insourced operations are redesigned and restructured, some of them can be out-

sourced anew. We apply to distributed applications the notion that local operations are

easier to analyze and restructure than remote ones. Specifically, Client Insourcing automat-

ically transforms a distributed application, comprising a client communicating with a remote

server, to run as a centralized program. The resulting centralized variant retains to a large

degree the semantics of the original application, but replaces all remote operations with local

ones. The centralized variant becomes easier to analyze and modify not only because it has

no remote operations, but as argued above, because the majority of program analysis and

transformation approaches and tools have been developed for centralized programs. The

centralized variant can be analyzed, modified, and verified to perform various re-engineering

tasks. It can then be redistributed anew into a re-engineered distributed web application.
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Client Insourcing is not a panacea that can resolve all difficulties of re-engineering mod-

ern distributed applications, which come in great variety. Nevertheless, we contribute to

the state of the art by demonstrating that our approach can be successfully applied to

re-engineering tasks that detect and fix performance bottlenecks, reshape the distribution

granularity for dissimilar network conditions, and improve the responsiveness of web-based

mobile apps. Our reference implementation targets so-called full-stack JavaScript applica-

tions, distributed applications in which both the client and server parts are written entirely

in JavaScript. We take advantage of the monolingual nature of such applications to stream-

line our implementation and evaluation. Nevertheless, the applicability of our approach in

general and of Client Insourcing in particular should not be limited to monolingual dis-

tributed applications. With additional engineering, our approach can be extended to work

with multilingual applications by integrating language translation or virtual execution.

Summary of Contributions

In summary, this dissertation makes the following major contributions:

1. The Client Insourcing Refactoring The focal point of this dissertation is Client

Insourcing, a new automatic refactoring that undoes distribution by gluing the local

and remote parts of a distributed application together. Client Insourcing creates a

centralized variant of a distributed application, replacing all remote invocations via

middleware with local function calls. This local variant can then can be analyzed and

modified more easily than its distributed counterpart. Then, the centralized variant

can be redistributed with all the local modifications in place.

We provide a reference implementation of Client Insourcing in the important domain

of Full-Stack JavaScript applications. To demonstrate the applicability of Client In-
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sourcing to facilitate common software maintenance and evolution tasks, we apply

our reference implementation to perform adaptive and perfective tasks to applications

in this target domain. The Client Insourcing and its reference implementation are

presented in Chapter 3.

2. A Debugging Approach for Web Applications We applied Client Insourcing to

introduce a debugging approach that can catch an important class of performance and

resource consumption bugs in web applications. Localizing bugs in web applications

is complicated by the potential presence of server/middleware misconfigurations and

intermittent network connectivity. Our approach first applies Client Insourcing to

convert a debugged application to its semantically equivalent centralized version, thus

separating the programmer-written code from configuration/environmental issues as

suspected bug causes. The centralized version is then debugged to fix various bugs.

Finally, based on the bug fixing changes of the centralized version, a patch is automat-

ically generated to fix the original application source files. The Debugging approach

and its reference implementation are presented in Chapter 4.

3. A Re-Architecting Approach for Correcting Ill-Conceived Distribution Gran-

ularity We applied Client Insourcing to re-architect distributed applications, whose

distribution granularity has turned ill-conceived. Distributed applications enhance

their execution by using remote resources. However, distributed execution incurs com-

munication overheads; if these overheads are not offset by the yet larger execution

enhancement, distribution becomes counterproductive. For maximum benefits, the

distribution’s granularity cannot be too fine or too crude; it must be just right. To

adjust the distribution of such applications, our approach automatically reshapes their

remote invocations to reduce aggregate latency and resource consumption by means of

a series of domain-specific automatic refactorings. The re-architecting approach and
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its reference implementation are presented in Chapter 5.

4. An Approach to Improving the Responsiveness of Web-based apps We

applied Client Insourcing to create a dynamic approach to redistributing full-stack

JavaScript mobile apps to improve their responsiveness. A mobile web app’s perfor-

mance depends heavily on the underlying network and the client device’s hardware

capacity. Static distribution allocates some application functionality to run on the

client and some on the server, with the resulting allocation remaining fixed through-

out the app’s execution. If the available network and the client device mismatch those

assumed during the static distribution, app responsiveness and energy efficiency can

suffer. By monitoring the network conditions, our framework determines whether a

dynamic redistribution would improve application performance. It then triggers a re-

distribution that moves server-side functionalities to the mobile client and vice versa.

When our framework moves server-side functions and their reachable state to the client,

they are invoked as regular local functions. The moved functionalities are accessed re-

motely again as soon as the network conditions improve. The re-architecting approach

and its reference implementation are presented in Chapter 6.

Structure

The rest of this Ph.D. dissertation is organized as follows. Chapter 2 presents the technical

background of this dissertation research. Chapters 3, 4, 5, and 6 cover our approach and

reference implementations. The chapter 8 discusses yet another possible application of Client

Insourcing: facilitating the integration of edge computing and storage resource into exiting

client-cloud applications, transitioning full-stack JS apps. Chapter 9 presents concluding

remarks and summarizes the contributions of this dissertation.



Chapter 2

Background

This sections introduces the main concepts and technologies used by this dissertation: soft-

ware maintenance, refactoring, and, Distributed Web Applications. The reader familiar with

these topics might choose to skip the corresponding sections.

2.1 Software Maintenance

Software Maintenance is an important part of life cycle of Software Engineering to modify a

software product since delivery. It is well known that the majority of software engineering

effort and costs is spent on software maintenance and evolution [12, 15]. The categories

of maintenance are identified as adaptive, corrective, and perfective modifications [55] and

ISO/IEC 14764 extends these categories and defines four types of maintenance as shown in

Figure 2.1. Corrective modification identifies and fixes the bugs existing in the application.

Adaptive modification changes the application to cope with anew environment such as the

hardware or the operating system. Perfective modification implements functional enhance-

ments to the application. Preventive modification increases maintability to prevent from

problems in the future.

In distributed applications—adaptive, corrective, and perfective modifications are particu-

larly hard, due to the potential presence of server/middleware misconfigurations and network

volatility. These mainstay conditions of distributed execution hinder the most important

6
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Evolutionary
Modifications

Enhancement

Corrective Preventive

Correction

Adaptive Perfective

Figure 2.1: Category of Evolutionary Software Modifications

phase of the maintenance process: determining the exact causes of problems to solve and

the locations in the code that implement them.

2.2 Refactoring

Refactoring is important the context of software maintenance, is applied to the original

code to improve modulariy, complexity, maintainability, and efficiency. Refactoring is an

automated program transformation that changes the original source code while preserving

its semantics.

The composite refactorings are behavior-preserving transformations which are frequently

used by programmers For instance, Rename Function Rename Variable is simplest refactoring

to avoid name conflicts. Extract Function refactoring extracts a block of code into a separated

function declaration. It is easy to maintain program by replacing duplicate parts with

function calls with the extracted function. Sometimes programmer realizes short contents or

unnecessary functions are hard to read. Inline Function is the opposite operation of Extract

Function that replaces the function calls with the content of function declaration.
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Figure 2.2: Inline Function and Extract Function Refactorings

2.3 Distributed Web Applications

Distribution has become part and parcel of the majority of computing domains. By using

remote resources, a distributed application can enhance its functionality or improve its qual-

ity of service. Sometimes distribution is inevitable, when certain resources can be accessed

only remotely. In other cases, distribution is a choice: the same functionality can be ex-

ecuted by means of local or remote resources. Executing a functionality remotely reduces

the computational load on the client at the cost of the delay, measured as the remote in-

vocation’s latency, and the local resources consumed to make this invocation. Typically it

is distribution middleware that consumes these additional resources, including computation,

memory, and energy. The invocation latency measures the expected deterioration in the

user experience—the more time the user has to wait for a remote functionality to complete,

the less satisfying their experience will be. Hence, the distribution cost is the sum of the

expected deterioration in the user experience and the amount of additional local resources

consumed to invoke the remote functionality. These costs must be offset by the attendant

execution enhancement for distribution to remain beneficial. Otherwise, distributed execu-

tion only incurs overheads, which hurt both performance and maintainability. Of course, if

some functionality can be accessed only remotely, these overheads are justified and unavoid-

able. However, if distribution is introduced to improve an application’s quality of service, it
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must be introduced at the right level of granularity, when opting to execute a functionality

remotely over the network indeed improves application performance (Figure 2.3). Intro-

ducing too much distribution for the expected benefits is a known architectural problem,

documented as the Nano-Service Anti-Pattern [73].

Bulk
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Overhead

Low 
Overhead

(Granularity of Remote Service)

Faster 
Speed 

Slower 
Speed

“Performance”
2

Nano Service Anti-pattern [Moha 2012 et. al]
:Too Much Distribution is not always beneficial

[Efficiency]

Slow
Speed

Fast
Speed

[Performance]

Figure 2.3: Level of Distribution: Performance versus Efficiency

Distributed execution is often used to improve performance. For example, in mobile apps,

as the computing resources of remote, cloud-based servers surpass those of mobile devices,

a functionality can be executed faster remotely than locally. However, executing a remote

cloud-based functionality requires passing parameters and receiving results over the network.

Network communication significantly complicates the device/cloud performance equation.

Transferring data across a network imposes latency and energy consumption costs. For low-

latency, high-bandwidth networks, these costs are negligible. For limited networks, these

costs can grow rapidly and unexpectedly, as operating over high-loss networks requires re-

transmission, which consumes additional battery power. Hence, the added overhead of net-

work transfer burdens the mobile device’s battery budgets, often negating the performance

benefits of executing a local functionality at a remote cloud-based server [97].

Distributed web applications follows guidelines of REST (Resentational State Transfer)

that represents web services in a textual representation and operated by HTTP (Hyper-
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text Markup Language) methods. Therefore, the remote web service is requested by the

resource’s URI (Uniform Resource Identifier) and responded with a payload formatted in

HTML (Hypertext Markup Language) and JSON (JavaScript Object Notation). Rest API

are stateless, meaning that each request can be handled in a isolated manner. The server

does not store any state about the client session on the server-side but the data can be shared

with different storage such as files and databases.

Distributed Web app architecture enables to interact between clients and servers with dif-

ferent programming languages by using One of the key functions of a middleware system is

marshaling and unmarshaling method parameters and return values. Marshaling converts

program values to a data format suitable for transmission; unmarshaling reverses the pro-

cess by converting the transmitted data format to regular program values (See Figure 2.4).

Our approach captures and replays HTTP traffic to analyze the marshaled parameters and

unmarshaled return values from the client and the server, respectively.

Send HTTP
Request 

Update DOM

Marshaling
parameter

Get HTTP
Response 

Unmarshaling
return value

(User Event) Get HTTP
Request

Send HTTP
Response  

Unmarshaling
parameter

Marshaling
return value

(Client-side) (Server-side)

Server Code
Execution

Client Code
Execution 

cClient 
Code

(Correspondence for “Marshaling” Points)

(Middleware)

Server 
Code

Figure 2.4: Web App’s Execution Model

Remote functionalities are invoked by means of distribution middleware, which exposes APIs

whose protocols and conventions differ from invocations in the same address space. These

APIs tend to differ widely depending on their vendor: the ecosystem features numerous

dissimilar distribution frameworks and libraries. Rather than encoding domain-specific pre-
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conditions, our approach uses domain agnostic semantic to identify the entry/exit points of

middleware functionality.



Chapter 3

Client Insourcing Refactoring

Developers often need to re-engineer web applications to address requirement changes made

only after deployment and usage. Re-engineering captures evolutionary modifications that

range from maintenance tasks to architecture-level changes [14]. A re-engineering effort

can involve adding a major feature, protecting against security vulnerabilities, or removing

performance bottlenecks. Modifying existing web applications requires complex program

analysis and modification operations that are hard to perform and even harder to verify. One

of the main causes of this complexity is the distributed execution model of web applications.

In this model, a web application’s execution flows across the separate address spaces of

its client and server parts. All remote interactions are typically implemented by means of

middleware libraries. As a result, the control flow of web applications can be highly complex,

with their business and communication logic intermingled. That complexity hinders all

tracing and debugging tasks. In addition, distributed execution over the network makes web

applications vulnerable to partial failure and non-determinism.

Program analysis is central to software comprehension. The web is predominated by dynamic

languages, which defeat static analysis techniques. Hence, to comprehend programs written

in dynamic languages, such as JavaScript, requires dynamic analysis. Software debugging

hinges on the ability to repeat executions deterministically [60, 70]. However, many web

applications are stateful, with certain client server interactions changing the server’s state.

It can be quite laborious and error-prone to restore the original state to be able to repeat

12
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a remote buggy operation [35, 56, 74]. All in all, it is the presence of both distribution and

stateful execution that makes it so hard to trace and modify web applications.

In this paper, we draw inspiration from business process re-engineering that can bring re-

mote operations in-house via insourcing. Once the insourced operations are redesigned and

restructured, some of them can be outsourced anew. As argued above, the notion of local

operations being easier to analyze and restructure than remote ones equally applies to web

applications.

Specifically, the approach presented herein first automatically transforms a web application,

comprising a client communicating with a remote server, to run as a centralized program.

The resulting centralized variant retains to a large degree the semantics of the original

application, but replaces all remote operations with local ones. The centralized variant

becomes easier to analyze and modify not only because it has no remote operations, but

also because the majority of program analysis and transformation approaches and tools have

been developed for centralized programs. After the centralized variant is modified to address

the new requirements and the modifications have been verified, it is then redistributed again

into a re-engineered distributed web application. Our target domain are web applications

written entirely in JavaScript, both the client and server parts; such applications are referred

to as full-stack JavaScript applications. We take advantage of the monolingual nature of such

applications to streamline our implementation.

In a web application, clients communicate with the server by means of the HTTP protocol,

typically in a request/response pattern. However, from the implementation perspective, the

HTTP functionality can be supported by a variety of middleware libraries with vastly dis-

similar APIs [64]. To be able to identify and replace the HTTP communication functionality,

a web application may need to be executed multiple times under different inputs. However,

some remote interactions cause the server to change its state. For example, a client can pass
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a parameter to the server, which would store that parameter in the server-side database.

In addition, the non-database state can change as well (e.g., adding the parameter to the

JavaScript list of displayed items). In different states, the server may respond dissimilarly,

thus making it impossible to identify HTTP middleware API calls, so they can be correctly

replaced with corresponding local calls of the insourced functionalities.

The focal point of our approach is Client Insourcing, a new automatic refactoring that undoes

distribution by gluing the local and remote parts of a distributed application together. Our

approach can precisely identify the functionality of HTTP middleware—irrespective of its

API and in the presence of stateful operations—by combining program instrumentation, pro-

filing, and fuzzing in a novel way. Our ideas are realized in our reference implementation—

Java Script Remote Client Insourcing (JS-RCI). We evaluate our approach’s value, correct-

ness, and utility by applying JS-RCI to re-engineer a set of real-world web applications.

The rest of this chapter is structured as follows. Section 3.1 motivates and summarizes our

approach. Sections 3.2 and 3.3 present the design and implementation specifics of the Client

Insourcing refactoring, respectively. Section 3.4 reports on how we applied Client Insourcing

to streamline three representative re-engineering scenarios of web applications. Section 3.5

discusses various applicability issues pertaining to our approach.

3.1 Re-engineering Distributed Web Apps

Developers often find themselves having to re-engineer an actively used application to ensure

its continued utility, reliability, and safety. When interacting with an application in real-

world settings, users may discover and report inefficiencies and imperfections. Users may

request that new features be added to an application to increase its utility. As users discover

existing faults and request new features, developers can decide to re-engineer the application
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to deliver an improved version to the users. Re-engineering modifications can range from

routine maintenance and evolution tasks to major architectural transformations. Next, we

demonstrate two examples of re-engineering full-stack JavaScript applications.

3.1.1 Example Apps

The following code snippets come from two third-party full-stack JavaScript applications

realty-rest (Figure 3.1) and recipebook (Figure 3.2), with both of their client and server

parts shown. Both applications rely on the network for their client and server parts to

communicate with each other. The primary user base of realty-rest are real-estate brokers,

licensed professionals that sell and purchase various properties on behalf of their clients. Due

to the nature of their business operations, real-estate brokers lead highly mobile professional

lives, moving from location to location to show properties to potential buyers. Hence, as

a mobile app, realty-rest is well-aligned with the needs of its users, who rely on the app

to be readily available, responsive, and reliable. To start using the app, a user selects a

property from the list of all properties registered with the system. The selected property

can then be updated or deleted, with the app’s client then sending HTTP commands to the

server, (e.g., DELETE /property/favorite to remove a property from the list of favorites,

etc). The HTTP commands are wrapped into distribution middleware (angular2/http) with

JavaScript API. Specifically, the client invokes HTTP.delete passing a URL parameter, with

angular2/http delivering the invocation to the server and calling function unfavorite there.

This function finds and deletes the passed property, returning the updated list of favorites to

the client. angular2/http marshals both property and the result-to-return as JSON-encoded

messages. The client unmarshals the returned result to update the GUI. The recipebook

maintains a list of cooking recipes at the server, so different clients could retrieve and update

the maintained recipes. recipebook uses a different middleware library to wrap its HTTP
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commands—angularJS, whose JavaScript API differs from that of angular2/http. While

realty-rest is a two-tier app (JavaScript client and sever), recipebook is three-tier (adding a

database tier).

//SERVER:server.js 
app.delete('/properties/favorites/' 
, properties.unfavorite); 
//server/properties.js 
var favorites = require('./property').favs; 
function unfavorite(request, response) { 
 var id = request.body.id;//unMarshalling 
 for (var i=0; i<favorites.length; i++){ 
   if (favorites[i].id == id){ 
       favorites.splice(i, 1);  
       break;}} 
   response.json( favorites )//Marshalling 
} 
//SERVER: server/property.js 
exports.data = [{id: 1,...}];  
exports.favs = [{id:2,…},…,{…}]; 

POST 
/properties/unf
avorite
HOST ..
[{"id":1,"city"
:..}]

HTTP/1.1 200 OK
Content-t: json
Content-Len: …
[{"id":2,"city"…]

1)HTTP Request
From Client

2)HTTP Response
From Server

//CLIENT: angular/…/RecipeControllers.js 
function init(){ //marshaling 
   recipe.getRecipe($routeParams.id) 
    .then(function(data){//unmarshaling 
      $scope.recipe = data;  
      appSync.prepForBroadcast(…);},    
      function(error){…} 
    ); 
} 

GET 
/api/recipes/1
HOST ..
User-Agent:..

HTTP/1.1 200 OK
Content-t:json
Content-Len:1901
[{"id":1,"name"
:..}]

Client Input JSCode 
Server Output

Performance Bottleneck
Remote Code to be Insourced

//SERVER: api/recipes.js 
var db  = require('../utilities/SQL'); 
var Auth = require('../utilities/Auth'); 
app.get('/api/recipes/:id', Auth.BAuth, 
 function(req,res){ //unMarshalling       
  db.query('SELECT * FROM recipes  
  WHERE id = ${req.params.id}',  
    function (results) { 
      if(error) 
        res.status(500).send({'Error'}); 
      else { 
       var data = []; 
       results.forEach(function(item) { 
       data.push({'id':item['id'], 
   'name':item['name']}) 
       }); 
        res.json(data); //Marshalling 
      }});//Query Invocation 
}); 

1)HTTP Request
From Client

2)HTTP Response
From Server

DELETE 
/properties/fav
orite
HOST ..
[{"id":1,"city"
:..}]

//CLIENT: app/../property-details.ts 
unfavorite(event, property){ 
                     //Marshalling 
this.pServ.unfavorite(property) 
.subscribe(favorite //unMarshalling 
    =>{ this.favorites =favorites;}); 
} 

//CLIENT: angular/…/RecipeCtrls.js 
function init(){   //marshalling 
   recipe.getRecipe($rParams.id) 
    .then(function(data){ 
  //unmarshalling 
     $scope.recipe = data;  
     appSync.prepForBroadcast(…);},    
      function(error){…} 
    ); 
} 

HTTP/1.1 200 OK
Content-t:json
Content-Len:…
[{"id":1,"name"
:..}]
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From Server

GET 
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User-Agent:..

Client parameter
Server Return Performance BottleneckJSCode 

Figure 3.1: the realty-rest app’s highlighted client and server code
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var Auth = require('../utilities/Auth'); 
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Figure 3.2: The recipebook app’s highlighted client and server code

Next, we present examples of how realty-rest and recipebook may need to be re-engineered

to address new requirements.
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3.1.2 Adapting to Disconnected Operation

Examining the history of realty-rest reveals that some of this app’s functionalities have

been moved between its client and server sites1. Since scant documentation makes it hard

to ascertain the reason for these moves, we next discuss a typical new feature that enables

distributed apps to continue operation in the absence of a network connection. In particular,

if users need to operate a mobile app in locations with limited or intermittent network

connectivity, the app has to deliver its core business functionality without relying on any

remote services. To enable such offline operations, several strategies have been proposed [71].

One such strategy is replication, which replicates a remote component locally, so the local

copy acts as a proxy of its remote counterpart. A consistency protocol keeps both copies

in sync. A naïve strategy for replicating a remote functionality would be just to copy its

complete source files to the client, adapting the copied code by hand as necessary. However,

such complete copying unnecessary replicates functionalities, some of which become “dead

code.”

3.1.3 Enhancing Privacy

Enterprises often find themselves in need to enhance user privacy in a released application.

Consider a request to keep the realty-rest user’s property browsing histories private from

other real-estate brokers due to business competition reasons. To ensure user privacy, cer-

tain server-side functionalities (e.g., Customer Relationship Management (CRM)) can be

redistributed to a special server that requires authentication before giving access to sen-

sitive information. In fact, realty-rest indeed has gone through a similar modification, as

evidenced by the existence of realty-salesforce2, which provides the same business function-
1ionic2-realty (https://github.com/ccoenraets/ionic2-realty)
2realty-salesforce (https://github.com/ccoenraets/ionic2-realty-salesforce)

https://github.com/ccoenraets/ionic2-realty
https://github.com/ccoenraets/ionic2-realty-salesforce
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ality, but takes advantage of third-party trusted identification and security features. To

re-engineer realty-rest into realty-salesforce, programmers would have to identify and mi-

grate the relevant functionality to another server, modifying the client to communicate with

different servers (regular and secure).

3.1.4 Improving Performance

If a substantial subset of users becomes unsatisfied with application performance, program-

mers may be asked to identify and remove performance bottlenecks. The left side of Figure

3.1 displays the server function [language=JavaScript,frame=none,numbers=none]unfavorite,

which contains a known performance bottleneck, rooted in the usage of favorite.splice(i,1),

an inefficient API for removing collection items. In fact, an actual pull request3 states that

Array.splice()’s performance is between 1.5 and 10 times slower than that of a customized

implementation, comprising a for loop iteration and Array.pop(). To be able to identify this

particular source of the experienced performance bottleneck, programmers either would have

to be intimately familiar with the peculiarities of JavaScript APIs or to rely on detailed ex-

ecution profiling, typically available only for centralized programs. recipebook also contains

a similarly inefficient forEach loop4. Notice that the distributed control flow that invokes

these inefficient functions, starting from the graphical actions at the client, traversing the

network through layers and layers of middleware, and finally executing the functions at the

server. The invocation flows can be interrupted by network volatility and authentication

failures. Hence, it is both complex control flows and possible failures that make it hard to

isolate the performance of a web application’s function.

3Perfective Modification for Array.splice() (https://github.com/nodejs/node/pull/20453)
4A modification request to remove this inefficiency appears here: https://github.com/elastic/

apm-agent-nodejs/pull/1275

https://github.com/nodejs/node/pull/20453
https://github.com/elastic/apm-agent-nodejs/pull/1275
https://github.com/elastic/apm-agent-nodejs/pull/1275
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3.1.5 Client Insourcing to the Rescue

Next, we explain how Client Insourcing can facilitate the re-engi neering tasks outlined

above.

Redistribution Client Insourcing creates a redistributable centralized variant devoid of the

unnecessary middleware functionality. Once the variant is modified, it can be redistributed

automatically. Numerous complementary research efforts have focused on automating the

process of distributing centralized applications, with automatic transformation tools released

to the public [40, 48]. Because the majority of existing refactoring techniques are designed

for regular centralized applications, they can be applied at will to centralized variants. For

example, the Extract Function refactoring can be used to separate some privacy-sensitive code

within a function into a separate function to be executed in a different environment. After

the sensitive code portions are separated into their own encapsulation units, the resulting

program can be redistributed, placing the sensitive units to execute in separate privacy-

enforcing server environments.

Isolated Profiling What if business logic can be precisely isolated from middleware and

distribution-related functionality? Then the isolated code can be easily profiled to ascertain

its performance characteristics and identify any performance bottlenecks. Client Insourcing

enables such isolated profiling by removing middleware and gluing the remote parts of a web

application together.

Offline Operation Client Insourcing can enable offline operation, without copying any

unnecessary code from the server to the client, by replicating only the remote functionality’s

subset needed at the client. The replicated subset can include both JavaScript code and

data persisted in a database.
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3.2 Design & Reference Implementation

In this section, we explain our design options and then detail the specifics of our implemen-

tation of the Client Insourcing refactoring.

3.2.1 Design Overview

We give an overview of the main design decisions behind Client Insourcing via specific

examples. Consider the task of moving the server functionalities of DEL /favorite or GET

/recipe/

:id to execute at the clients (Figure 3.1). Instead of invoking these functions via middleware

that handles communication, partial failures, and authentication, they would become regular

local functions to be called directly. Hence, all middleware-based code would have to be

replaced with direct function calls.

Consider the service DEL /favorite, whose business logic is encapsulated within the server-

side unfavorite function. We want to insource unfavorite so it can be called as a regu-

lar local function. However, we cannot simply move this function from the server to the

client, as its business logic and middleware functionality are intermingled. In addition,

the exports.favorite array, referenced in the body of unfavorite, is declared externally. If

unfavorite and exports.favorite are not moved together, invoking the function locally would

raise an error. Hence, we must move all the referenced externally declared program ele-

ments to the client as well. JS-RCI identifies the exact boundaries of the server functionality

to insource. However, some dependent business logic of GET /recipe/:id is not confined

to JavaScript code only. JS-RCI also transparently insources code that persists data in a

relational database.
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//app/../property-details.js 
import {j5ga2} from './j5ga2';  
unfavorite { const IS_SYNC = false; 
  if (IS_SYNC) {//synchronous call 
    this.favorites = j5ga2(property.id); 
    return; 
  } //default: non-blocking call 
  new Promise((resolve,reject) => { 
    var out_j5ga2 = j5ga2(property.id); 
    resolve(out_j5ga2); 
  }).then(res => this.favorites = res); 
} 

//SERVER:server.js 
app.delete('/properties/favorites/' 
, properties.unfavorite); 
//server/properties.js 
var favorites = require('./property').favs; 
function unfavorite(request, response) { 
 var id = request.body.id;//unMarshaling 
 for (var i = 0; i < favorites.length; i++){ 
   if (favorites[i].id == id){ 
       favorites.splice(i, 1);  
       break;}} 
   response.json( favorites )//Marshaling 
} 
//SERVER: server/property.js 
exports.data = [{id: 1,...}];  
exports.favs = [{id:2,…},…,{…}]; 

//CLIENT: app/../property-details.ts 
unfavorite(event, property){//Marshaling 
this.pServ.unfavorite(property) 
.subscribe(favorite //unMarshaling 

    =>{ this.favorites =favorites;}); 
} 

POST 
/properties/unf
avorite
HOST ..
[{"id":1,"city"
:..}]

HTTP/1.1 200 OK
Content-t: json
Content-Len: 1945
[{"id":2,"city"…]

1)HTTP Request
From Client2)HTTP Response

From Server

//app/../property-details.js 
import {j5ga2} from './j5ga2';  
unfavorite { const IS_SYNC = false; 
  if (IS_SYNC) {//synchronous local call 
    this.favorites = j5ga2(property.id); 
    return;} //default: non-blocking call 
    new Promise((resolve,reject) => { 
    var out_j5ga2 = j5ga2(property.id); 
    resolve(out_j5ga2); 
    }).then(res => this.favorites = res);} 

//CLIENT: angular/…/RecipeControllers.js 
function init(){ //marshaling 
   recipe.getRecipe($routeParams.id) 
    .then(function(data){//unmarshaling 
      $scope.recipe = data;  
      appSync.prepForBroadcast(…);},    
      function(error){…} 
    ); 
} 

GET 
/api/recipes/1
HOST ..
User-Agent:..

HTTP/1.1 200 OK
Content-t:json
Content-Len:1901
[{"id":1,"name"
:..}]

Client Input JSCode 
Server Output

Performance Bottleneck
Remote Code to be Insourced

//SERVER: api/recipes.js 
var db  = require('../utilities/SQL'); 
var Auth = require('../utilities/Auth'); 
app.get('/api/recipes/:id', Auth.BAuth, 
 function(req,res){ 
  db.query('SELECT * FROM recipes  
  WHERE id = ${req.params.id}',//unMarshaling       
    function (results) { 
      if(error) 
        res.status(500).send({'Error..'}); 
      else { 
       var data = []; 
       results.forEach(function(item, index) { 
       data.push( 
  {'id':item['id'],'name':item['name']}) 
       }); 
        res.json(data); //Marshaling 
      }});//Query Invocation 
}); 

1)HTTP Request
From Client

2)HTTP Response
From Server

//app/../b8f9a.js 

exports.favs = [{id: 1,city:'B,..}]; 

//app/../j5ga2.js 

var favorites=require('./b8f9a').favs; 

export function j5ga2(input){  
 var tmpv1 = input;  

 var id = tmpv1; 

 for (var i=0; i< favorites.length;  

i++){… favorites.splice(i, 1);…} 

 tmpv0 = favorites;  

 var output = tmpv0; 

 return output;}//extracted function 

Figure 3.3: Insourced a functionality: DEL /properties/favorite in realty-rest

3.2.2 Identifying the Code to Insource

Next, we present our solution for automating the steps above, realized as the Client In-

sourcing Refactoring. One of our design goals was to make sure that this domain-specific

refactoring is not too burdensome for the programmer. We assume that the refactored ap-

plications come with a set of standard test cases, and that the application of these cases

is automated. It is during the application of such test cases, when JS-RCI detects the

marshalling/unmarshalling points of the functionality to insource at the client invocations.

Intuitively, the purpose of detecting these marshalling/unmarshalling points in the client

code is to identify the entry/exit execution points of the remote functionality to insource.

These points correspond to the locations in the client code, at which remote invocation pa-

rameters are marshalled to be transferred across the network, and the remote invocation’s

results are unmarshalled to be used in the subsequent client execution.

To extract all the server code of the remote functionality to insource, JS-RCI uses symbolic

execution. We assume that the server is implemented in Node.js and define the execution

rules as pertaining to this framework’s architectural conventions. First of all, JS-RCI normal-

izes server code to facilitate to detect entry/exit execution points and extract the executed

JavaScript code. To that end, JS-RCI additionally introduce temporal local variables and

makes JavaScript Statement to have a single operation (i.e., tmpv0 and tmpv1 in Figure 3.3).
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For symbolic execution, we use z3 [20], parameterized with our own set of rules and facts.

For example, the profiled parameters and return results of a remote functionality are added

as new z3 facts. Figure 3.5 shows the overall process of Client Insourcing.

3.2.3 Exploiting Asynchrony

Notice that in a distributed client-server application, the remotely invoked functionalities

running at the server, and the client code invoking these functionalities, run in separate

address spaces that are not shared (unless the application runs on top of some distributed

shared memory system [81], which is not a standard option for web applications). The

parameters passed to remote invocations and the invocation results are copied between the

client and the server heaps, always creating a new copy rather than mutating any existing

program state. Hence, in a distributed application that uses application-layer middleware

(e.g., HTTPClient), the client and the server parts share no mutable state (See Figure 3.4).

Following this observation, one can conclude that the client and the server parts have no non-

middleware dependencies between them. That is, in such distributed applications, the only

way for the client code to invoke a server-side functionality is by making a remote invocation

via middleware. To maintain this semantics, our design also provides a single entry point

to invoke the insourced functionality, a function previously invoked via a middleware API

call at the server. It is these insights that make it possible to safely execute the insourced

code asynchronously, without any need for synchronization! Our design of Client Insourcing

takes advantage of these insights by executing the insourced functionality asynchronously

by default. In particular, the generated code makes use of the Promise framework that

exposes asynchronous execution via a standardized interface that uses the programming

idioms congruent with the design of JavaScript.
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[Client’s Address Space]

[Server’s Address Space]

Client Part’s 
Set of 
References

Server Part’s
Set of 
References

Set of Reachable States 
(Client)

Set of Reachable States 
(Server)

Middleware

After Client Insourcing 
[Client’s Address Space]

No Shared Mutable State

Distributed App

Centralized 
Ver.’s Set of 
References

Set of Reachable States 
(Insourced Part)

Set of Reachable States   
(Original Client)

Figure 3.4: Reachable States between Server and Client parts

For a specific example, consider the code listing in Figure 3.3 that shows the generated client

code for DEL /favorite. Notice that the default invocation model for this insourced function

is asynchronous, a runtime behavior that is put into effect by creating a new instance of a

Promise closure. Once the asynchronous execution of j5ga2 completes, the Promise framework

invokes the callback resolve to handle the successful execution. Since our design aims for

versatility, we provide an option for the insourced functionality to be invoked synchronously

as a regular blocking local call. This behavior can be put into effect by setting the value of

the boolean variable IS_SYNC to true.

Position
for Remote
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Extracted 
Remote 
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REQ/RES
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Client
JS Code

Server
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Figure 3.5: Overall process for Client Insourcing
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3.3 Implementation Specifics

In this section, we provide some additional details pertaining to our implementation choices.

3.3.1 Detecting Marshalling Points in Client/Server Program

In a full-stack JavaScript application, the client interacts with the server in the request/re-

sponse pattern, exchanging data in JSON or XML formats. Client Insourcing determines

which middleware API calls send and receive the HTTP protocol commands through the

following automatic and application-agnostic procedure.

First, the round-trip traffic of the client/server interactions is recorded. Then, JS-RCI parses

the request/response data to obtain the deserialized values of client parameters and server

return. To that end, JS-RCI captures live network traffic, not only to record/replay the

HTTP interactions, but also to extract the used HTTP commands. To capture business

logic (as compared to fault handling logic), JS-RCI only processes the responses with the

status code of 400 (i.e., successful execution).

Next, JS-RCI replays the recorded round-trip execution that invokes the remote functionality

to insource. Both the client and server parts are dynamically instrumented to keep track

of values for (1) arguments and returns of the function invocations (2) reading and writing

variables. JS-RCI keeps comparing the values of the invocations and variables to identify

the ones equal to client parameter and server return. To instrument the invocations and

variable accesses, JS-RCI uses the Jalangi2 callback APIs [86].

To identify the entry points at the server, JS-RCI keeps comparing the values for recorded

client parameter of the remote functionality. That is, the parameter has been unmarshalled

and is about to be used. To identify the exit point at the server, JS-RCI follows a similar
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procedure, but looks for the value recorded as the server return of executing the remote

functionality. Finding an equal value read or written determines the exit point of the re-

mote functionality. That is, the return value is about to be marshalled and sent across the

network to the client. One may wonder: how does our approach determine that the equality

comparison indeed identifies the entry and exit points of the remote functionality rather

than some intermediate values that also happen to be equal to the values of client parameter

and server return? To identify the entry and exit points at the server, our analysis identifies

the first instance of the client parameter equality and the last instance of the server return

value equality. Unlike its server-side logic, the analysis identifies the last instance of the

client parameter equality and the first instance of the server return value equality.

Fuzzing Request/Response Messages

Even with these arrangements in place, it is still possible to misidentify the correct entry

and exit points, particularly if the parameters or return results are primitive types, such as

built-in numbers or strings (i.e., 0 or 1 values of id in findById service). To prevent such

misidentification, JS-RCIpopulates the original round-trip content by padding the HTTP

header and body data with random bits. A fuzzing dictionary is also applied to fuzzable

primitives types: string has the possible values “JSRCIStr” and integer has the possible

values from “90,000” and to “100,000.” For instance, JS-RCI encodes “1” as “90,001”. For

a service without a client parameter (i.e., findAll type services), JS-RCI fuzzes the request

with “JSRCIStr” so JS-RCI can locate the function block’s begin as the entry point.
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Achieving the Idempotency for Record/Replay Executions

Despite the stateless nature of the RESTful architecture that guides the design of WWW,

few realistic web applications are truly stateless. In fact, every HTTP request can change the

server’s state. These changes hinder the precision of our detection of the server’s marshalling

points, introducing false-negatives. Even HTTP traffic were replied with identical requests,

a stateful server is likely to behave differently in 1) marshalling its response output or 2)

entering the remote functionality through a different point (e.g., if a visited entry is deleted,

it cannot be revisited).

Testing web applications deterministically requires that test cases be isolated [35, 74]. Oth-

erwise, the same test case can yield dissimilar results when executed with the same input.

Restoring the server to its original state by hand would be expensive in realistic web appli-

cations, requiring a manual reset of the relevant database tables and a fresh restart of the

server. In contrast, JS-RCI fully automates the process to achieve the idempotent execution

of all HTTP requests. To maintain the original server’s state, JS-RCI interleaves an auto-

matically generated restore operation, run between all successive record or replay executions.

Similarly to a prior approach that checkpoints PHP web application [35], JS-RCI initiates

the restore operation with a special HTTP request. Similarly to manipulating fuzzed request

messages, JS-RCI generates the restore operations by enhancing original HTTP requests with

the new “JSRCIRestore” parameter. To be able to restore the server state, JS-RCI first saves

the initial values of all server’s global variables, so they can be restored on demand. Also, as

part of its restore operation, JS-RCI executes transaction control operations between every

SQL invocations, so the database rollbacks to its previous state.

As its specific implementation strategy, JS-RCI uses jalangi2, whose shadow execution in-

struments the original JavaScript code, so the server events can be hooked dynamically.
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First, JS-RCI detects all (1) post declarations of global variables (g) and (2) pre/post Call

Expressions of SQL statements (f). Then, it uses two customized shadow executions at (1),

g′ = store(g) to serialize and store the state of all global variables and restore(g, g′) to reset

all global variables to their original values, hooked by restore HTTP commands. To restore

the database state, JS-RCI uses shadow execution invoke(f, sql_stat), which invokes Call

Expression of a SQL statement f with a new SQL clause as the argument. invoke(f,”Start

TRANSACTION”) and invoke(f,”ROLLBACK”) are executed at pre and post invocations

of f , respectively. JS-RCI executes these operations only once for the nested SQL invocations.

3.3.2 Identifying the Relevant Server Code

One of the factors that complicates the Client Insourcing refactoring is that the code com-

prising the functionality of the insourced functionality may not be confined to the boundaries

of a single function or even the same script. While the entry point of the remote execution

can be a JavaScript function, this function can be invoking other functions or reference vari-

ables declared elsewhere. When insourcing a remote functionality, all this dependent code

must be moved together to the client to create a self-sufficient local call that no longer relies

on any server-based code.

To determine the data dependencies between the entry/exit points of a distributed appli-

cation’s remote functionality, we draw lessons provided by the state-of-the-art JavaScript

analysis frameworks [36, 37, 96]. JSdep [96] logically hypotheses a DATA-DEP relation be-

tween JavaScript statements based on read/write facts, a point-to-analysis model of Gate-

Keeper [36] and a control flow analysis [37] . For instance, an assignment statement ASSIGN

becomes a fact that implies READ and WRITE relations for the variables involved. READ and

WRITE on the same variable between different statements imply a DATA-DEP relation at the
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statement level.

ASSIGN(stmt1,v1,v2) //var v1 = v2; v is variable, stmt1 is statement
WRITE(stmt1,v1) ← ASSIGN(stmt1 v1,v2)

READ(stmt,v2) ← ASSIGN(stmt,v1,v2)
DATA-DEP(stmt1,stmt2) ← READ(stmt1,v1) ∧ WRITE(stmt2,v1)

…

We extend JSdep’s knowledge base with the rules and facts, necessary to model the execution

of middleware-based statements. In particular, we define the UNMARSHAL/MARSHAL rules to

identify the entry and exit points, whose WRITE clauses are inferred from the logged profiling

data. To that end, JS-RCI encodes the REF facts by using the logged values to symbolically

copy the unmarshalled/marshalled values (V uid
unMar/V

uid
Mar, uid is an unique execution id such

as ”J5ga2”) into the local variables as follows:

//the entry point at the server
UNMARSHAL(stmt1,vunMar, V uid

unMar) ← WRITE(stmt1,vunMar) ∧ REF(vunMar,V uid
unMar)

//the exit point at the server
MARSHAL(stmt1,vMar, V uid

Mar) ← WRITE(stmt1,vMar) ∧ REF(vMar,V uid
Mar)

Based on the resulting knowledge base, JS-RCI can query the executed statements stmtn

for the presence of unmarshalled/marshalled values. Predicate EXECUTEDSTMTS is a conjunc-

tion of two clauses: the first clause expresses the dependent statements for the parameter

marshalling statement, while the second clause expresses the dependent statements for the

result unmarshalling statement, both specific to the server execution. Because the DATA-DEP

relation is transitive, one can obtain the executed statements from the entry/exit points, as

expressed by the following set operations:

EXECUTEDSTMTS(stmtn,V uid
unMar, V

uid
Mar) ←

(DATA-DEP(stmtn ,stmt1) ∧ MARSHAL(stmt1,v1, V uid
Mar)) ∧

(¬DATA-DEP(stmtn,stmt2) ∧ UNMARSHAL(stmt2,v2, V uid
unMar))
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3.3.3 Insourcing Database-Dependent Code

Our approach can also insource code that persists data in a relational database. To that

end, we take advantage of the ubiquity of SQL. Recall that JS-RCI dynamically instruments

string values used as arguments and return values in all function calls. To identify the

entry point for database-related operations, JS-RCI examines the function calls whose strings

arguments represent the CRUD operations (Create, Read, Update, and Delete). Consider

the code snippet in Figure 3.1. JS-RCI detects that the following Call Expression is a READ

operation, as it is a SQL SELECT statement:

db.query("SELECT * FROM recipes WHERE id=id", function(result)..);

Although the server and the client are written in JavaScript and their respective database

engines accept the same SQL statements, the JavaScript APIs of these engines differ. So it

would be impossible to simply move this Call Expression and its dependent statements (e.g.,

var db = require("../utilities/SQL");) to the client. Hence, JS-RCI adapts the server-side

database API to that of the client rather than copying the database-specific statements ver-

batim. With these API calls translated, developers can simply migrate the server-side data

schema and tables. Notice that database engines store their data in dissimilar proprietary

formats.

As a specific example, consider how JS-RCI translates the database API calls of MySQL5 to

those of alasql6.

By extracting the arguments and return values of function calls, JS-RCI extracts table names

and their columns, thereby inferring a complete data schema of the insourced code. Extract-

ing the actual table content requires a different approach, as the WHERE clause and numer-

5https://github.com/mysqljs/mysql
6https://github.com/agershun/alasql
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ical functions, such as COUNT, return only a subset of table rows. To retrieve all database

data, JS-RCI instruments the server code by using the shadow execution invoke(db.query,

"SELECT * FROM recipes"), which is introduced in Section 3.3.1. To infer the database schema

from the extracted entries, JS-RCI uses tableschema-py7. Finally, JS-RCI uses the CREATE

and INSERT commands with alasql to create tables and insert the extracted data into them,

respectively, for the client-side database.

3.4 Evaluation

To determine how feasible and useful our approach is, we conduct an empirical evaluation

driven by the following questions:

• RQ1. Effort Saved by Client Insourcing : How much programmer effort is saved

by applying JS-RCI? We measure the saved effort as the number of lines of code that

would need to be copied and modified by hand. JS-RCI saves this effort automating

these manual source code changes. (Section 3.4.2)

• RQ2. Correctness of Client Insourcing : Does Client Insourcing preserve the

business logic of full-stack JavaScript applications? Are existing standard use-cases

still applicable to the centralized variants of the subject applications? (Section 3.4.3)

• RQ3. Value for Adaptive Tasks : How much redundant code can Client Insourcing

eliminate by replicating only the necessary remote functionality? Are our centralized

variants amenable to be redistributed with a third-party automated distribution tool?

(Section 3.4.4)

7https://github.com/frictionlessdata/tableschema-py
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• RQ4. Value for Perfective Tasks : How suitable are the centralized variants of

distributed subjects for isolating and removing common performance bottlenecks? How

much does Client Insourcing reduce the task complexity as compared to the original

debugging process? (Section 3.4.5)

3.4.1 Evaluation Setup

To evaluate our approach, we have applied it to insource 61 different remote executions of

10 full-stack JavaScript applications. Table 3.1 summarizes the information about invoking

these remote functionalities for each application. These remote services differ in their HTTP

methods (e.g., GET, POST, PUT etc.), types of parameters, return results, and business

logic.

To confirm that our approach is widely applicable, we selected as our evaluation subjects

open-source full-stack JavaScript applications with dissimilar HTTP frameworks used to

implement their client (Tier 1), server (Tier 2) and database (Tier 3) parts: Tier1: JQuery,

Ajax, fetch, axios, AngularJS, and Angular2-TS; Tier2: Express, koa.js, and Restify, and

Tier3: MySql, Postgres, and knex.js.

3.4.2 Saving Effort with Client Insourcing

Although developers can insource remote components by hand, the resulting program trans-

formations can quickly become laborious and error-prone, especially for functionalities scat-

tered across multiple script files and database-dependent code appearing in non-JavaScript

files. Hence, the value of JS-RCI lies in automating the transformations required to insource

these components. With JS-RCI completely automating the refactoring, the programmer

would not have to modify any code by hand. To estimate the effort saved by JS-RCI, we
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Table 3.1: Subject Distributed Apps and Client Insourcing Results

Subject Apps HTTP Methods Remote Services C&P/M
(Tier1,Tier2,Tier3) (ULOC)

recipebook
(AngularJS↔Express

↔MySQL)

GET /recipes 22/45
GET/PUT/POST/DEL /recipes:id 72/172
POST /ingredients 25/48
GET/PUT/DEL /ingredients:id 74/207
POST /directions 26/57
GET/PUT/DEL /directions:id 60/130

DonutShop
(Ajax↔Express
↔knex)

GET/POST /donuts 22/88
GET/POST/DEL /donuts:id 29/155
GET/POST /employee 20/71
GET/POST/DEL /employee:id 29/138
GET/POST /shops 16/83
GET/DEL /shops:id 19/128

res-postgresql
(axios↔restify↔Postgres)

GET/POST /user 22/71
GET/PUT/DEL /user 40/120

med-chem-rules
(fetch↔koa.js↔knex)

GET /hbone 9971/9994
GET /molecular 9974/9997

theBrownNode
(JQuery↔Express)

GET /users/search 37/65
GET /users/search/id 36/64

Bookworm
(AngularJS↔Express)

GET /api/ladywithpet 394/409
GET /api/thedea 394/409
GET /api/theredroom 394/409
GET /api/thegift 394/409
GET /api/wallpaper 394/409
GET /api/offshore 394/409
GET /api/bigtripup 394/409
GET /api/amont 394/409

realty_rest
(Angular2↔Express)

GET /properties 284/297
GET /properties:id 287/300
GET /brokers 86/99
GET /brokers:id 90/103
GET/POST/DEL /prprts/favs 34/73
POST /prprts/likes 291/304

ConferenceApp
(Angular2↔Express)

GET /findAllSpeakers 13/66
GET /findSpeakerById 15/68
GET /findAllSessions 43/117
GET /findSessionById 46/119

Employee Dir
(Angular2↔Express)

GET /employees 22/44
GET /employees/id 38/60

shopping-cart
(Angular2↔Express)

GET/POST/DEL /cart-items 79/130

Total 61 24.9K/26.6K
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use the ULOC (Uncommented Lines of Code) that would have to be copied at the server

and pasted to the client as well as the ULOC that would have to be modified at the client

for each remote service. Thus, modified client code (M) includes the copied/pasted code

(C&P). For the 61 remote services of 10 applications, JS-RCI eliminates the need to modify

the client code as many as 26,685 ULOCs in total, 20,073 ULOCs are database code.

3.4.3 Correctness of Client Insourcing

The applicability of JS-RCI hinges on whether Client Insourcing preserves the execution

semantics (i.e., business logic) of the refactored applications, a property we refer to as cor-

rectness. A subject application’s original and refactored versions are expected to successfully

pass the same test cases. Some of the tests that come with our subjects are also distributed,

invoking server-side functionalities through HTTP middleware. To use their remote param-

eters and results as test invariants, we manually transformed these tests for local execution

without middleware. Altogether we ran 61 test cases against the original and insourced ver-

sions of our subject applications, with all of them successfully passing. It is possible that for

some complex or esoteric cases, the correctness of Client Insourcing would not be as stellar,

but by examining why a test case failed, the programmer can always correct the insourced

code.

The Effectiveness and Correctness of Detecting the Marshalling Points

Recall that in Section 3.3, we proposed two search strategies—Idempotent Execution and

Fuzzing—to detect the marshalling points of a refactored application. To compare and

contrast the effectiveness and correctness of these strategies, we ran our analysis procedure

with each of these strategies in isolation.
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We observed that Idempotent Execution with its Record/Replay phases removes the false-

negatives in the detected marshalling points for stateful servers. Our results show that subject

applications with only safe (or read-only) operations are not affected by the restoring process

(20/61). However, we discovered that idempotent execution is critical for the majority of

our subjects (41/61). Specifically, having been changed by HTTP PUT/POST/DELETE

requests, global variables were restored correctly in realty-rest and database entries were

restored in other subjects.

In contrast, Fuzzing removes false-positives for detecting marshalling points. We discovered

that Fuzzing proved effective also in twelve cases of our subjects (12/61). Hence, to infer the

correct set of marshalling points, while removing both false-negatives and positives, JS-RCI

applies both strategies in turn.

Table 3.2: Correctness affected by Search Strategies

Subject Apps Stateless DB All w/o Fuzzing w/o Idem_Ex
theBrownNode ✓ X 2/2 0/2 2/2
Bookworm ✓ X 8/8 0/8 8/8
ConferenceApp ✓ X 4/4 4/4 4/4
EmployeeDir ✓ X 2/2 2/2 2/2
shopping-cart X X 3/3 3/3 0/3
realty-rest X X 8/8 6/8 2/8
recipebook X ✓ 13/13 13/13 0/13
DonutShop X ✓ 14/14 14/14 0/14
res-postgresql X ✓ 5/5 5/5 0/5
med-chem-rules ✓ ✓ 2/2 2/2 2/2
Total 100%(61/61) 80%(49/61) 32%(20/61)
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3.4.4 Insourcing’s Value for Adaptive Tasks

Value of Automated Enabling of Disconnected Operation

In lieu of Client Insourcing, developers would have to replicate remote functionalities by

hand. Unassisted by program analysis, a programmer remains unaware which specific code

entities comprise a remote functionality that needs to be replicated. Hence, a safe option

for manually replicating any non-trivial remote functionality would be to first duplicate the

entire server-side source file at the client, and then adapt the duplicated code as necessary.

Notice that such copy-and-modify procedures invariably introduce some unnecessary code,

which is never used but still needs to be deployed and maintained. Hence, in our evaluation,

we count the number of lines of such unnecessary code that could result from copying the

entire source file from the server to the client.

Table 3.3: Replication

Subject Apps SLOC SCI
LOC

SLOC - SCI
LOC

(Unnecessary LOC)
theBrownNode 120 76 44
Bookworm 340 299 41
realty-rest 457 420 37
ConferenceApp 78 51 27
EmployeeDir 56 35 21
shopping-cart 48 26 22
recipebook 624 376 126
DonutShop 455 308 147
res-postgresql 73 28 45
med-chem-rule 10228 9976 252

To identify the code portions that are indeed unnecessary to replicate the remote func-

tionalities under consideration, we first count the total lines of JavaScript code taken to

implement the original server parts of each subject app (SLOC). To replicate all remote func-

tionalities, programmers would copy SLOC to the client and adapt them as necessary. The
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copied SLOC are intermingled with various unnecessary parts, including middleware, fault

handling, or no-longer relevant comments. The values of SLOC are computed by examining

the programmer-written files and their dependencies deplofyed in the Node.js server. In con-

trast, Client Insourcing extracts from the server only the lines of code required to implement

the replication disconnected operation (SCI
LOC). For simplicity, we assume that the entire

remote functionality is replicated for each subject application. To estimate the number of

lines of code that Client Insourcing saves from being replicated unnecessarily, we subtract

SLOC from SCI
LOC as shown in Table 3.3.

Value of Centralized Variants for Redistribution

Client Insourcing creates a redistributable (centralized) application variant that can be refac-

tored and enhanced using any state-of-the-practice program transformation tools and then

distributed anew using any state-of-the-art ditribution tools. We applied two JavaScript

refactoring tools on our centralized variants: NODE-SANDBOX8 for security enhancements

and EXTREMEJS [103] for redistribution. NODE-SANDBOX prevents untrusted JavaScript code

from executing infinite loops or consuming large volumes of heap memory in the isolated

code. However, sanboxing frameworks incur a heavy performance penalty on the isolated

code, and as such must be used sparingly, if the application is to remain usable. Hence, the

code to sandbox is typically isolated from the rest of the application to run in its own process

and address space. EXTREMEJS automatically distributes centralized JavaScript applications

at the function level of granularity.

Appdist −→ JS-RCI Appcent−−−−→ NODE-SANDBOX
Appsanboxed

cent−−−−−−−→

EXTREMEJS Remote Stub−−−−−−−→
Client Stub

Appsanboxeddist

8Node-SandBox (https://github.com/patriksimek/vm2)

https://github.com/patriksimek/vm2
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Figure 3.6: Redistribution with Sandboxing

In our evaluation, we measure the additional execution time incurred by sandboxing only a

subset of the remote functionality vs. the entire original remote functionality. This compar-

ison highlights the importance of isolating only the code that needs to be sandboxed. Figure

3.6 shows by how much sandboxing increases the execution time for two versions of the sub-

ject applications: (1) only the needed subset of the server part is isolated (SandBox_part);

(2) the entire server part is isolated (SandBox_all). The observed differences in execution

time between these two versions are quite striking, clearly showing that sandboxing the

entire server part is impractical.

3.4.5 Insourcing’s Value for Perfective Tasks

Consider the problem of identifying the source of a performance inefficiency or bottleneck

in a distributed app. First, one has to be able to exclude the reasons of misconfiguration

or network volatility among the potential causes. Then, one has to make sure the app is

free of known architectural anti-patterns [83]. For example, consecutive fine-grained remote

invocations can be batched to take advantage of better progress being made in increasing
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the bandwidth as compared to the latency characteristics of modern networks [78]. How-

ever, the sources of inefficiency can be more subtle than those stemming from ill-conceived

architectural decisions. At some point, the debugging focus may need to switch to the

programmer-written code. The JavaScript ecosystem features numerous libraries, so the

same functionality can be implemented in a variety of ways, each of which may have its

own performance characteristics. Choosing one programming idiom over another can have

a dramatic effect on the overall app performance [33, 34]. Given the divergent performance

characteristics of different JavaScript APIs, several prior work directions have focused on

identifying and removing common sources of inefficiency. The approach presented in [85]

empirically identifies recurring patterns of inefficient program performance, so they can be

restructured, thereby improving the overall performance. That kind of restrucuring is a

common example of perfective modifications. However, the majority of the state-of-the-art

approaches that identify and remove performance inefficiencies target centralized programs.

Client Insourcing can make these approaches applicable to distributed apps.
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We applied the approach presented in [85] to the centralized variants of our subject apps

produced by means of Client Insourcing. Out of 61 subjects, 11 ended up containing some

known patterns of performance inefficiency. For example, Bookworm repetitively misused

unoptimized string API patterns: data.split("...").join("asdf").split(".").join("asdf").

By taking the network and middleware functionality out of the list of suspected causes of

performance problems, Client Insourcing enables so-called “isolated profiling,” which iso-

lates the programmer-written code to be used as the sole target of analysis and optimization

efforts. To demonstrate the value of Client Insourcing, we removed all the pointed-out 11

performance bottlenecks from both the original subjects and their centralized variants. As it

turns out, the bottleneck removals improved the performance of both versions (distributed

and centralized) of each subject. Figure 3.7 summarizes the observed performance improve-

ments. For the original distributed subjects (∆Tdist), the improvements range between 29.5%

and 2.0%. For their centralized variants (∆Tcent), the improvements range between 34.8%

and 1.6%. We also applied a linear regression analysis to compute how closely ∆Tdist and

∆Tcent correlate with each other, resulting in ∆Tcent = 1.0089 ∗∆Tdist + 1.556. This equa-

tion shows that ∆Tcent and ∆Tdist are almost perfectly correlated, so centralized variants

can indeed serve as reliable and convenient proxies for an important class of performance

debugging and optimization tasks.

In addition, Client Insourcing reduces the complexity of the debugging process by stream-

lining the debugged subject’s execution flow: from the complexity of distributed execution

over the Web to the simplicity of centralized execution. To quantify the actual value of

debugging the centralized variant of a web application instead of its original distributed

version, we compared the total execution time taken by invoking distributed functionalities

vs. their local insourced counterparts. We assumed that the debugging task was identify-

ing performance bottlenecks, so we heavily instrumented our benchmarks before measuring
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their execution performance. As it turns out, insourcing reduces a distributed functional-

ity’s execution time by more than 90% on average. Given that debugging typically involves

repeated executions, having much faster subjects to debug should improve the efficiency of

the debugging process.

3.4.6 Threats to Validity

The validity of our evaluation results is subject to both internal and external threats that

we discuss in turn next.

Internal Threats

One of our evaluation criteria is the performance of the JavaScript code generated by our

implementation of the Client Insourcing refactoring. The performance of JavaScript code

is known to be heavily affected by specific design and implementation choices. Similarly,

our own JavaScript coding practices are likely to have affected the observed performance

characteristics. For example, rather than directly inject the insourced code segments into

the client source files, we choose to create brand new source files for each insourced lan-

guages declaration, with the new files simply included in the original files. Client Insourcing

could have been implemented in a variety of other ways, possibly yielding different software

engineering and performance metrics.

External Threats

All our performance measurements were performed on (DELL-OPTIPLEX5050, running the

JavaScript V8 Engine (v 6.11.2). Due to the popularity of JavaScript, the issue of maximizing

the efficiency of JavaScript engines has come to the forefront of system design [85]. Although
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V8 is a state-of-the-art JavaScript engine, it has its competitors, such as SpiderMonkey.

Hence, the absolute performance of our experiments could differ if our measurements were

run in a different execution environment.

3.5 Discussion

Our approach works only with relational databases interfaced with by means of SQL queries.

Some non-SQL databases, such as MongoDB, use a distinct syntax in its client API. It should

be possible to support the dissimilar CRUD operations of non-SQL databases, and we plan

to explore such support as a future work direction.

For various reasons, some remote functionalities cannot be insourced to run on the client, thus

making it impossible to create a centralized variant of certain distributed applications. In

those cases in which distribution is inevitable, some application resources, naturally remote

to the rest of the functionality, cannot change their locality. For instance, news readers

display the stories deposited to some centralized repository. It would be impossible to move

the news functionality away from the repository to the client, without manually creating

some mock components that realistically emulate the appearance of news content locally.

In other words, some remote functionalities may depend on resources that cannot be easily

migrated away from their host environment for reasons that include relying on server-specific

APIs or being dependent on some hard-to-move infrastructure components.

In addition to standard commands, HTTP also provides a separate WebSocket interface that

opens a dedicated TCP/UDP connection after a round-trip handshake. WebSocket-based

communication is fundamentally asynchronous and is used mostly in streaming scenarios. Al-

though Client Insourcing can also help in the re-engineering of web apps that use WebSocket

for non-streaming scenarios, we left the support for this part as a future work direction.
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Some web applications may span across more than two tiers. Our reference implementation

assumes a two-tier client-server application with a possible server-side SQL database, in

which both tiers are implemented in JavaScript. It should be possible to extend Client

Insourcing to multi-tier applications, perhaps by applying the two-tier technique pairwise to

each respective pair of tiers. At the same time, flattening tiers may not work well for mobile

execution environments, which are known to be resource-scarce.



Chapter 4

A Debugging Approach for Web

Applications

Most programmers abhor debugging, due to its arduous, wasteful, and tedious nature. It

can be much harder to debug distributed applications than centralized ones. Distributed

systems suffer from partial failure, in which each constituent distributed component can fail

independently. In addition, non-trivial bugs, including performance bottlenecks and mem-

ory leaks, can be caused by server/middleware misconfigurations or intermittent network

connectivity rather than by any problems in the programmer-written code. Programmers

need novel debugging approaches that can pinpoint whether the cause of a non-trivial bug

in a distributed application is indeed in the programmer-written code.

To alleviate the challenges of debugging distributed applications, we present a novel debug-

ging approach that takes advantage of automated refactoring to remove much of the uncer-

tainty of distributed execution from the debugged programs. Our approach first transforms

a distributed application into its semantically equivalent centralized version by applying our

domain-specific refactoring, Client Insourcing, which automatically moves a server-based re-

mote functionality to the client, replacing middleware communication with local function

calls. Client Insourcing is a refactoring, as the resulting centralized application retains its

execution semantics. Then standard debugging techniques are applied to debug this central-

ized application. After the bug is localized and fixed, our approach generates a patch that

43
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is applied to the faulty part of the distributed application. We call our approach Catch &

Release or CANDOR for short, as it catches bugs in the centralized version of a distributed

application, and after fixing the bugs, releases the application for its continued distributed

execution.

We implement CANDOR for the important domain of full-stack JavaScript applications, in

which both the client and server parts are written and maintained in JavaScript, and evaluate

its effectiveness in fixing two important types of bugs known to be prevalent in this domain:

memory leaks and performance bottlenecks. Our evaluation applies our approach to localize

and fix bugs that were previously found in third-party applications. We verify the correctness

and value of our approach by applying our bug-fixing patches to the faulty versions of these

applications and then confirming that the patched versions pass the provided test suites. We

argue that CANDOR reduces the complexity of the debugging process required to fix these

bugs by reporting on our experiences.

This paper makes the following contributions:

1. We present a novel debugging approach for distributed applications that uses auto-

mated refactoring to produce a semantically equivalent, centralized versions of the

debugged subjects. Any of the existing state-of-the-art debugging techniques become

applicable to track and localize bugs in such centralized versions. (CATCH)

2. We develop automated bug patching, which given the bug-fixing changes of the de-

bugged application’s centralized version, replays these changes on the application’s

client or server parts. (RELEASE)

3. We empirically evaluate the correctness and value of our approach by applying it to

track and localize known bugs in real-world third-party full-stack JavaScript applica-

tions.
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1 //server part in theBrownNode
2 var express = require('express'), app =

express.createServer(..);
3 var users=[]; ...
4 app.post('/users/search', function(req,

res) {
5 var data = req.body; //client-input
6 var result=getUsers(data);//serv-output
7 res.send(result);});
8 function getUsers(searchUser) {
9 return getObjsInArray(searchUser,

users);}

1 //inefficient for-in loop in server part,
lines are from 5 to 18

2 function getObjsInArray(obj, array) {
3 var foundObjs = [];
4 for (var i=0; i < array.length; i++){
5 for(var prop in obj) {
6 if(obj.hasOwnProperty(prop)) {
7 if (obj[prop] === array[i][prop]) {
8 foundObjs.push(array[i]);
9 break;

10 }}}}
11 return foundObjs;
12 }

1 //client part in the BrownNode
2 $.ajax({
3 url: '/users/search',
4 data: {fName: $('#fName').val(),
5 ...},//client-input
6 type: 'POST',
7 success: function(data) {//serv-output
8 $('#results').text(JSON.stringify(data));}});

1 //patch for server part
2
3 5,18c1,16
4 <(original code for getObjsInArray)
5 ---
6 > function getObjsInArray(obj, array) {
7 > var foundObjs = [];
8 > var keys = Object.keys(obj);
9 > for (var i=0; i < array.length; i++) {

10 > for (var j = 0, l = keys.length; j < l;
j++) {

11 > var key = keys[j];
12 > if (obj[key] === array[i][key]) {
13 > foundObjs.push(array[i]);
14 > break;
15 > }}}
16 > return foundObjs;
17 > }

Figure 4.1: Distributed App theBrownNode and patch for an inefficient iteration

4.1 Debugging Full-Stack JavaScript Applications

In this section, we explain our approach to debugging distributed full-stack JavaScript ap-

plications by discussing how it facilitates the process of locating bugs in two real-world

examples.
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4.1.1 Motivating Example I: Removing Performance Bottlenecks

Consider the code snippet in Fig. 4.1, in which the remote service /users/search of the

distributed app theBrownNode calls function getUsers, which contains nested for loops. The

client portion invokes the server-side script /users/search, passing various query parameter

data to obtain the search query results. The code of the inner loop is quite inefficient, as

it performs two conditional checks. Being on a hot execution path, this inefficiency causes

a noticeable performance degradation. One can remove this bottleneck by eliminating the

need to check whether the property prop is indeed defined in the object searchUser and not

inherited from searchUser prototype: to exclude the inherited properties, the code can be

optimized to use Object.keys() [85].

Notice that in the original distributed version of this application, it would be non-trivial to

locate the actual source of this performance bottleneck. The performance of a distributed

application can be affected by myriad factors, many of which have nothing to do with the ap-

plication’s implementation. To meet the expected performance requirements, servers must be

properly configured for the actual usage scenarios, and so is the middleware infrastructure

that encapsulates the communication functionality between the client and server compo-

nents. In addition, network connectivity and utilization can affect the overall performance.

Intermittent network connectivity and bandwidth saturation can lead to uncertain periods

of poor network performance.

Even if the programmer were to become certain that the cause of the observed performance

bottleneck lies in the implementation, localizing the source location of the bug in a dis-

tributed application can be a complex undertaking that requires generating a large volume

of synthetic HTTP traffic against a specially instrumented version of the server. Then the

client parameters would have to be matched against the resulting server execution profiles.



4.1. DEBUGGING FULL-STACK JAVASCRIPT APPLICATIONS 47

This debugging procedure is complicated, as it requires a customized server deployment and

the examining of the remotely generated performance profiles.

With CANDOR, the programmer first replaces the remote invocation of /users/search with an

equivalent local function call, thus eliminating all middleware functionality and server-side

execution. Once the remote code is insourced, the resulting centralized program can be easily

debugged by using any existing tools for JavaScript programs. Rather than transferring log

files from the server to the client and trying to correlate different remote executions with

their parameters, the programmer can debug the execution of local function users_search.

Once the programmer changes the insourced version to fix the bug, CANDOR automatically

generates a fix patch (the shaded code snippet in Fig. 4.1) to be executed against the original

server or client part of the distributed application (i.e., the “release” phase).

4.1.2 Motivating Example II: Detecting Memory Leak

Some of the most common bugs afflicting remote services are memory leaks. Consider func-

tion leakingService in Figure 4.2 that represents a simplified server-side service invoked by

various remote clients. These clients invoke the service by means of distribution middleware

that hides all the low-level details on the client-server communication. Notice that every

time this function completes its execution, it leaks some memory, as random String is ap-

pended to the globally declared Array leak, which is never garbage-collected. Although this

example is simplified for ease of exposition, it is representative of numerous anti-patterns

that can quickly exhaust the server’s memory upon heavy utilization.

This bug is also quite challenging to detect and fix. One first has to be certain that the

memory leak in question is not due to server/middleware configuration problems. In addi-

tion, the very presence of middleware functionality makes it hard to locate memory bugs in
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1 // every time this service is invoked,
2 // it "leaks" a bit of memory, as
3 // var leak is never garbage-collected
4 var leak = [];
5 function leakingService() {
6 leak.push(Math.random()+" on a stick,

short!");
7 }
8 http.createServer(function (req, res) {
9 leakingService();

10 res.end("success");
11 }).listen(1337);

1 // invoking leakingService in client
2 let data = '';
3 http.get(S_URL, (res) => {
4 res.on('data', (chunk) => {
5 data = JSON.parse(chunk);
6 });...);

1 //patch for server part
2 16,18c1,19
3 <(original code for leakingService)
4 ---
5 >(definition of delegating writeToFile)
6 > function leakingService() {
7 > writeToFile(Math.random()+" on a stick,

short!");
8 > } //leakage detected in var leak

Figure 4.2: Memory Leak Examples for Server and Client parts

the programmer-written code. Much of the client/server distributed execution flows through

middleware libraries, whose memory consumption and footprint can conceal the actual lo-

cations in the programmer-written code that contain memory-related bugs.

To help developers test the remote functionality, the Node.js framework provides testing

libraries, using which one can script HTTP requests against a given server. These libraries

help verify whether the input and output values of a service being tested are as expected.

These functional testing utilities cannot help identify whether the server code is leaky, how-

ever.

In the absence of fully automated techniques for debugging Full-Stack JavaScript Applica-

tions, developers have no choice but to manually instrument both the client and the server

parts of the debugged applications. More specifically, the current state of the art in detect-

ing memory leaks in JavaScript programs involves taking and comparing with each other

multiple heap snapshots in the suspect regions of the server-side functionality. A commonly

used technique for finding memory leaks in web applications is three snapshots [101]. Even
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detecting a sufficient degradation in performance of the server-side functionality requires

some client to execute multiple consecutive HTTP requests. As a result, to reproduce a

memory leak bug, programmers are expected to follow a complex and tedious debugging

process.

In contrast, CANDOR takes a drastically different approach to debugging full-stack JavaScript

applications. It performs all bug localization tasks on the distributed application’s central-

ized version, in which both the client and server parts execute within the same JavaScript

interpreter. This centralized version is generated automatically via a new refactoring that

we call Client Insourcing. This refactoring moves the server-side functionality to the client,

so it can be invoked by calling local functions rather than through the layers of distribu-

tion middleware such as HTTP Client. In essence, Client Insourcing integrates the remote,

potentially buggy functionalities with the client code, so all the debugging techniques for

centralized JavaScript applications can be applied to the insourced application. For example,

state-of-the-art modern JavaScript execution environments provide built-in profiling infras-

tructures that can be applied to any running application. A centralized application can be

re-executed at will without having to coordinate the execution of multiple remote execu-

tion nodes. Because Client Insourcing replaces all distributed functionality with direct local

function calls, the identified memory leaks would indeed stem from the programmer-written

code rather than any server/middleware misconfiguration.

4.2 CANDOR: Design & Reference Implementation

CANDOR works in three phases. First, the server part is automatically insourced, producing

a centralized application whose semantics is equivalent to the original distributed full-stack

JavaScript application. The resulting centralized application is then debugged by means of
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any of the existing techniques for locating and fixing bugs in JavaScript programs. Finally,

based on the before (i.e., buggy) and after (i.e., fixed) versions of the centralized application,

CANDOR generates a patch to be executed against the application’s original client or server

parts, thereby applying the fix to the correct portion of the distributed application.

4.2.1 The Client Insourcing Automated Refactoring

Full-stack JavaScript applications comprise client-side and server-side JavaScript code. The

Client Insourcing automated refactoring first identifies the remotely invoked functionalities of

the server code by statically analyzing the corresponding marshaling points of the parameters

passed by the client to the server and the server’s output to the client (i.e., marked as

//client-input and //serv-output parts respectively in Fig. 4.1). The process requires no

manual steering from the programmer, whose role is limited to running the application’s test

suites under standard input and transferring the generated log file of the marshaling points

to the server. Parameterized with this file, dynamic symbolic execution then computes a

transitive closure of the server-side statements executed by the remote invocations. Client

Insourcing analyzes JavaScript programs by using the z3 SMT solver [20], similarly to other

declarative program analysis frameworks[59, 96].

The computed relevant server statements are then insourced into the application’s client part.

The insourced statements are placed in automatically generated client-side functions. These

functions are invoked directly without any middleware. So the refactoring process completes

by replacing all middleware-based invocations with direct calls to these functions (see the

equivalent centralized version of theBrownNode in Fig. 4.3). This refactoring preserves the

application’s business logic, while significantly simplifying its control flow. Rather than span-

ning across two JavaScript engines (client and server), the resulting centralized applications
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//equivalent Centralized App
var users=[]; //insourced
function getObjsInArray(obj,

array){...} //Insourced(
buggy iterations)

function getUsers(searchUser)
{...} //Insourced

function users_search(i){
var out=getUsers(i);
return out;
} //Insourced

//$.ajax({url: ’/users/search
’,...}) is replaced by

var input = {fName:...};
var output=users_search(input);
$(’#results’).text(JSON.

stringify(output));

Client Server

c

(Remote Invocation)

c

Client
Insourcing

interpreterA

getUsers getObjsInArr

initVars

DisplayResult
interpreterA

Continuous
Local Control Flow

Centralized App

Interrupted
Local Control Flow

Interrupted
Remote Control Flow

getUsers getObjsInArr

initVars

DisplayResult

(Insourced
server codes)

intepreterB

Fig. 3: Continuous Control Flow of Distributed Codes(theBrownNode in Fig. 1) con-
structed by Client Insourcing(left: generated code for centralized applications)

can be challenging, particularly if the maintenance programmer, in charge of a
debugging task, is not the same programmer who wrote the original buggy code.
By transforming the original application into its centralized counterpart, Client
Insourcing creates a debugging subject with a regular local control flow that is
easy to follow with standard debugging tools (Fig. 3).

4.2 Catching and Fixing Bugs in Insourced Apps

Insourcing produces centralized applications that can be debugged by means of
any of the existing or future JavaScript debugging techniques. CandoR makes
all these state-of-the-art debugging techniques immediately applicable to full-
stack JavaScript applications. Automatically produced equivalent centralized
versions are easier to execute, trace, and debug, due to their execution within
a single JavaScript engine. Next, we explain how CandoR can help remove
performance bottlenecks and memory leaks.

Identifying and Removing Performance Bottlenecks The interpreted,
scripting features of JavaScript make the language a great fit for rapid pro-
totyping tasks. Unfortunately, deadline pressures often leads to programmers
having to move such prototyped code into production. Once deployed in actual
execution environments, this code frequently suffers from performance problems.
Several previous works address the challenges of uncovering non-trivial recurring
cases of performance degradation in JavaScript applications [?,?,?]. For example,
reference [?] identifies 10 common recurring optimization patterns: 2 inefficient
iterations, 6 misused JavaScript APIs, and 2 inefficient type checks. One can find
these patterns statically by analyzing a JavaScript codebase. Notice that static
analysis can be applied separately to the client and server parts of a full-stack
JavaScript application. However, applying the Pareto Principle [?] to program

Figure 4.3: Continuous Control Flow of Distributed Codes constructed by Client Insourcing

require only one engine. Since JavaScript engines often differ in terms of their debugging

facilities (e.g., logging support, information messages, etc.), interacting with only one engine

reduces the cognitive load of debugging tasks. In addition, one of the key hindrances that

stand on the way of debugging distributed applications is the necessity to keep track when

the control flow changes execution sites. The control flow of a full-stack JavaScript applica-

tion can go through any of the constituent application parts: client, server, and middleware.

Ascertaining when the flow crosses the boundaries between these parts can be challenging,

particularly if the maintenance programmer, in charge of a debugging task, is not the same

programmer who wrote the original buggy code. By transforming the original application

into its centralized counterpart, Client Insourcing creates a debugging subject with a regular

local control flow that is easy to follow with standard debugging tools (Fig. 4.3).
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4.2.2 Catching and Fixing Bugs in Insourced Apps

Insourcing produces centralized applications that can be debugged by means of any of the

existing or future JavaScript debugging techniques. CANDOR makes all these state-of-the-art

debugging techniques immediately applicable to full-stack JavaScript applications. Auto-

matically produced equivalent centralized versions are easier to execute, trace, and debug,

due to their execution within a single JavaScript engine. Next, we explain how CANDOR can

help remove performance bottlenecks and memory leaks.

Identifying and Removing Performance Bottlenecks The interpreted, scripting fea-

tures of JavaScript make the language a great fit for rapid prototyping tasks. Unfortunately,

deadline pressures often leads to programmers having to move such prototyped code into pro-

duction. Once deployed in actual execution environments, this code frequently suffers from

performance problems. Several previous works address the challenges of uncovering non-

trivial recurring cases of performance degradation in JavaScript applications [33, 44, 85].

For example, reference [85] identifies 10 common recurring optimization patterns: 2 inef-

ficient iterations, 6 misused JavaScript APIs, and 2 inefficient type checks. One can find

these patterns statically by analyzing a JavaScript codebase. Notice that static analysis can

be applied separately to the client and server parts of a full-stack JavaScript application.

However, applying the Pareto Principle [109] to program optimization, one can expect a

typical program to spend 90% of its execution time in only 10% of its code. Hence, to verify

whether the found inefficiencies are indeed the sources of performance bottlenecks requires

dynamic analysis, which is much easier to perform on the centralized version of a debugged

distributed application. Specifically, the centralized version is instrumented and its runtime

performance profile is generated. Then each candidate inefficiency is removed in turn and

another profile is generated. By comparing the original profile and that of a modified ver-

sion, one can verify whether the latest fix was indeed for a performance bottleneck-causing
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bug. Without a centralized version, the number of performance profiles would need to at

least double, and the server part would require a separate execution driver to generate its

profiles.

Fixing Memory Leaks When fixing memory leaks, programmers typically store the ex-

ecution traces of leaky code persistently for a subsequent examination. When debugging

real-world web applications, programmers often can delegate the logging task to a third-

party service. However, to fix a memory leak in a distributed version, both the client and

server parts need to be logged. In contrast, with CANDOR, programmers can localize mem-

ory leaks by applying a memory profiler such as memwatch1 to the debugged application’s

centralized version. As shown in the Fig. 4.2, memwatch detects the leaking global array

leak in the centralized version, with the fix replacing leak.push with writeToFile2. CANDOR

then generates a patch to be applied to the application’s server part.

4.2.3 Releasing the Bug Fixes

Once the programmer fixes the bug in the application’s centralized version, the resulting

fixes have to be applied to the actual client and server parts of the original application, thus

completing the final release phase of the CANDOR debugging process. To that end, CANDOR

automatically generates input scripts for GNU Diffutils3, which executes these scripts against

the source files of the original full-stack JavaScript application by using GNU patch4.

To correctly generate a diff script that modifies the affected lines of the original applications,

CANDOR keeps track of the correspondences between the application’s original and insourced

versions. This process is complicated by the multi-step nature of Client Insourcing transfor-
1https://github.com/eduardbcom/node-memwatch
2For additional implementation details, see https://bit.ly/2B9a3wf
3https://www.gnu.org/software/diffutils
4http://savannah.gnu.org/projects/patch

https://github.com/eduardbcom/node-memwatch
https://bit.ly/2B9a3wf
https://www.gnu.org/software/diffutils
http://savannah.gnu.org/projects/patch
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Figure 4.4: Debugging Full-Stack JavaScript Applications with CANDOR

mations. Because the basic insourcing unit is a function, all free-standing server statements

are first placed into individual functions, through a process that synthesizes new function

names and applies the extract function refactoring on the free-standing statements. We call

this process normalization. The actual insourcing transformation is applied at the function

level of granularity.

CANDOR keeps track of how the lines map between the original client and server source files

and their centralized version. This mapping is used to automatically generate a patch that

replays the bug fixing changes of the centralized version on the original source code’s client

or server portions (Fig. 4.4).
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4.3 Evaluation

• RQ1—Correctness: Does Client Insourcing preserve the execution semantics of full-

stack JavaScript applications? Are existing test-suits still applicable to the centralized

variants of the debugged applications? (4.3.1)

• RQ2—Value: By how much does CANDOR reduce the debugging complexity in terms

of the number of steps and tools required to localize and fix bugs? (4.3.2) How much

programmer effort can CANDOR save? (5.3.2)

4.3.1 Evaluating the Correctness of Client Insourcing

Table 4.1 shows subject full-stack applications and their remote services. The size of each

subject application is shown in terms of the number of uncommented lines of JavaScript code

(ULOC) for the server (SULOC) and the client (CULOC) parts. Client Insourcing changes the

architecture of full-stack JavaScript applications from distributed to centralized by combining

their server and client parts. CIULOC indicates ULOC for the centralized version of each

subject.

The applicability of CANDOR hinges on whether Client Insourcing preserves the execution

semantics (i.e., business logic) of the refactored applications, a property we refer to as cor-

rectness. In modern software development practices, applications are maintained alongside

their test suites, a collection of test cases that verify each important unit of application

functionality. In our correctness evaluation, we leverage the ready availability of such test

suites for our subject applications. In other words, the original and refactored versions of a

subject application is expected to successfully pass the same set of test cases.

Some tests in the available test suits are also distributed, in that they invoke remote services
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by means of HTTP client middleware, which marshals input parameters and unmarshals

returned values. It is the returned values that are used as test invariants. We had to manually

transform such distribution-specific tests to work against the centralized (insourced) versions

of their test subjects.

Table 4.1: Subject Distributed Apps and Client Insourcing Results

Subject Apps SULOC CULOC Remote Services CIULOC

theBrownNode 147 43 /users/search 37
/users/search/id 36

Bookworm 371 1814

/api/ladywithpet 394
/api/thedea 394

/api/theredroom 394
/api/thegift 394

search_leak 34 13 /search_leak 17
ionic2_realty_rest 453 387 /properties/favorites 24

Table 4.1 shows the total number of tests in each evaluated test suite, including the number of

tests manually transformed to work against the centralized versions of subject applications;

the table shows whether tests successfully passed in the original and refactored version of

each subject. Based on these results, we can conclude that Client Insourcing shows a high

degree of correctness(8
8
·100=100(%)), as the same of number of successful tests is passed by

the refactored applications, making them suitable for debugging.

4.3.2 Case Study: Traditional vs. CANDOR-Enabled Debugging

In this case study, we compare and contrast a traditional approach to localizing a bug in a

full-stack JavaScript application and the CANDOR debugging approach. In this case study, we

assume that a programmer needs to debug a distributed application with n remote function-

alities5 ftn1...n
remote to produce i corrective patches P 1...i; applying the patches fixes the found

bugs. We assume that standard profiling is used to stamp the start and the end of executing
5Each remote functionality is exposed as a remote service invoked via some middleware API.
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each remote service, so as to obtain the total execution time and memory footprint. To the

best of our knowledge, no automated tools can identify the entry/exit points of a server-side

remote functionality invoked by clients. Hence, the programmer is expected to manually

examine the server-side code to locate and instrument these entry and exit points for every

remote functionality in question. In some cases, in order to instrument some business logic

functionality, it must first be disentangled from any middleware-specific functionality. How-

ever, for ease of exposition, we disregard this additional required debugging-related task.

Once the instrumentation is in place, a typical debugging procedure involves continuously

invoking client-side HTTP requests against the instrumented remote functionalities. After

a certain number of requests, the server-side logs then can be collected, transferred to the

client, and examined for the obtained execution time and memory footprint numbers profiles

(Fig. 4.5a).
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(a) Typical Debugging Process for Full-Stack JavaScript Apps
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(b) Streamlined Debugging Process with CANDOR

Figure 4.5: Comparing the Debugging Processes

In essence, our approach reduces the accidental complexity of debugging; the essential com-

plexity cannot be reduced, so localizing and fixing bugs will always remain a delicate and
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complex task. Nevertheless, our approach allows programmers to focus on the actual de-

bugging activities, unencumbered by the complexity of having to trace the execution of a

buggy application across distributed sites. CANDOR simplifies the process by automatically

identifying n remote functionalities and transforming them into equivalent n centralized

local functions ftn1...n
centralized, integrated with the client code. Afterwards, all the relevant

debugging procedures can be applied to the resulting centralized application. Since these

procedures are strictly local, they can be repeated at will, with their output examined in

place. As a result, the number of debugging procedures decreases as compared to the tradi-

tional process, as shown in Fig. 4.5b.

4.3.3 Quantifying the Debugging Effort Saved by CANDOR

We see the main draw of CANDOR in that it reduces the amount of effort required to debug

distributed applications to approximately that required to debug centralized ones. Although

any debugging task can be cognitively taxing, tedious, and laborious, removing the complex-

ity of distributed communication is expected to reduce these burdens. However, to be able to

perform all debugging-related changes on the centralized version of a distributed application,

these changes must affect the performance and memory consumption of both the distributed

and centralized versions in comparable ways. In other words, if a change to the centralized

version improves its performance or memory consumption, a similar improvement should be

expected in the distributed version.

To check this hypothesis, we fixed different types of bugs in the centralized versions of 8 sub-

jects, measuring their before and after execution time and memory consumption numbers.

We then obtained the same measurements for their original and fixed distributed versions.

Table 4.2 presents the performance and memory consumption improvements for these debug-
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ging subjects. To measure performance, we use the V8 profiler. To reduce noise, we repeated

each use case 2000 times and compared the average observed time elapsed: Pbefore and Pafter,

with the performance improvement calculated as Pimproved =
Pbefore

Pbefore−Pafter
· 100(%). For the

memory leakage bugs, we compared how much memory was used before and after the bug

fixes by repeatedly executing the subjects 2000 times. The table’s last column (PD
improved and

PCI
improved) shows the resulting percentage improvements for the distributed and centralized

versions. As one can see, the improvement percentages are very close to each other, con-

firming that the centralized version can serve as a viable debugging proxy for its distributed

application.

We also approximate the debugging effort saved by counting the number of uncommented

lines of code (ULOC) that need to be examined by hand to successfully perform a debugging

task. A successfully executed debugging task involves two phases: (1) localize the source

line of the bug, (2) fix the bug by modifying the source code (i.e., generate a fix patch). In

traditional debugging, phase 1 requires that all the executed client and server statements be

examined, while with CANDOR, Client Insourcing puts all the server statements executed by

remote services into regular local functions (CIULOC in Table 4.1), thus eliminating the need

to examine any remotely executed code to localize bugs. In phase 2, the bugs are fixed by

applying automatically generated patches (FULOC).

4.3.4 Threats to validity

When implementing the patch generation module of CANDOR, we made several design choices

that may affect our evaluation results. For example, we measured the performance im-

provement of subjects running on a specific V8 Engine(v 6.11.2) and instrumenting ma-

chine(DELL-OPTIPLEX5050). However, the actual amount of improvement can change based
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Table 4.2: Quantifying Debugged results by CANDOR

Remote Services bug types [85] FULOC
PD
before PD

after PD
improved

(PCI
before) (PCI

after) (PCI
improved)

/users/search inefficient iteration 31 0.36ms 0.26ms 28.8%
(0.19ms) (0.13ms) (27.79%)

/users/search/id inefficient iteration 31 1.7ns 1.19ns 29.53%
(2.5ns) (1.63ns) (34.8%)

/api/ladywithpet misused APIs 18 5.89ms 4.99ms 18.03%
(2.74ms) (2.24ms) (18.13%)

/api/thedea misused APIs 18 5.63ms 4.82ms 14.39%
(2.71ms) (2.25ms) (15.3%)

/api/theredroom misused APIs 18 0.65ms 0.53ms 18.06%
(1.87ms) (1.56ms) (16.58%)

/api/thegift misused APIs 18 1.17ms 1.04ms 11.03%
(0.36ms) (0.31ms) (12.71%)

/search_leak memory leak 24 619.10kb 519.13kb 16.15%
(476.16kb) (409.10kb) (14.17%)

/properties/favorites memory leak 42 824.62kb 511.37kb 61.26%
(669.4kb) (201.7kb) (69.87%)

on the specific choice of running environments. Also, the ULOC for the patches automatically

generated by CANDOR can differ in size from those generated by humans. Because CANDOR

generates patches at statement granularity, no additional lines can be added for readability

or commenting. Human programmers are free to format the patches in an arbitrary fashion,

thus affecting the total number of lines taken by their bug fixing patches.

4.4 Conclusions and Future Work

We have presented a new debugging approach—CANDOR—that facilitates the debugging

of full-stack JavaScript applications. As a future work direction, we plan to conduct a

systematic user study of JavaScript programmers to assess the effectiveness and usability of

the CANDOR debugging approach.
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Correcting Distribution Granularity

5.1 Assessing and Improving the Utility of Distributed

Functionality

We target distributed applications that comprise the client and server parts, communicating

with each other by means of distribution middleware, such as the HTTPClient library or

CORBA [93]. Our application domain are full-stack JavaScript applications, in which both

the client and server parts are written in JavaScript; this domain is becoming increasingly

widespread due to the popularity of Node.js and other server-side JavaScript frameworks.

The client invokes server-side remote functionality, which executes corresponding code and

returns back the results to the client. The client passes input parameters, and the server

returns results. The middleware mechanism serializes and deserializes both the parameters

and results to transfer them across the network and make them available for computation.

5.1.1 Motivating Example

Consider Bookworm, a book reader implemented as a full-stack JavaScript mobile app. In

addition to enabling users to read books on their mobile devices, Bookworm has a feature

that reports statistical information extracted from the text of the books. To that end, the

app features a remote service that given a book title, analyzes its text and returns the

61
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results of this analysis. Because text processing is computationally intensive, it is commonly

performed remotely at a powerful server rather than locally on a mobile device. The original

implementation of this remote text analysis service runs all analysis tasks (e.g., overall length,

punctuation percentage, unique vocabulary, etc.) in sequence, returning their results in bulk.

For large books, waiting for all the tasks to complete before any results become available

can degrade the user experience. Hence, a possible restructuring could separate the unit

containing all sequentially performed analysis tasks into multiple asynchronous units, each

of which immediately returning the computed results back to the client.

As it turns out, the majority of the resulting remote executions for analysis tasks (e.g.,

overall length, punctuation percentage, etc.) are not computationally intensive. However,

the client consumes additional resources to execute these tasks by performing multiple remote

invocations. The only analysis task that involves heavy processing and takes a long time to

execute is “extract unique vocabulary.” To minimize the overall latency of invoking these

text analysis tasks, they can be restructured into two remote services: one to invoke “extract

unique vocabulary” and the other one to invoke the remaining analysis tasks in bulk (See

Figure 8.1).

To determine the optimal structuring and distribution of the text analysis tasks would re-

quire profiling their execution under different inputs. Hence, the remote analysis services

need to be both restructured and redistributed, a non-trivial re-engineering task. The ap-

proach presented herein systematically identifies what an optimal distribution is for a given

optimization criteria and presents automated program transformations that eliminate much

of the engineering complexity of redistribution.
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Figure 5.1: Correcting Granularity of Bookworm

5.1.2 Distribution Execution Cost Function

In the motivating example above, we show how redistribution can optimize remote services.

Rather than trying to determine redistribution optimization opportunities through trial-and-

error, distributed app developers need intuitive numerical models that can inform them about

the actual cost/benefit ratio of remote services. To that end, we formulate the distribution

execution cost function.

Problem Formulation: Our goal is to determine which functional distribution from the

client’s standpoint would minimize the following cost of distributed execution function:

CDist_Exec(ri) = α · latency(ri) + (1− α) ·
∑

resource(ri).

Intuitively, executing a functionality remotely reduces the computational load on the client
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at the cost of the delay, measured as the remote invocation’s latency, and the local resources

consumed to make this invocation. Typically it is distribution middleware that consumes

these additional resources, including computation, memory, and energy. The invocation

latency measures the expected deterioration in the user experience—the more time the user

has to wait for a remote functionality to complete, the less satisfying their experience will be.

Hence, the distribution cost is the sum of the expected deterioration in the user experience

and the amount of additional local resources consumed to invoke the remote functionality.

Hence, the optimization objective is to identify the most favorable remote utility/client cost

ratio. Our optimization strategy strives to determine the level of granularity for remote

services that maximizes this ratio.

Consider a long-running bulk remote service r. Since invoking this service takes a long time,

even with low client-side resource utilization, the client cost may not be as favorable. One can

break up this long-running service r into a collection of smaller services r
′
1, . . . , r

′

k. Assume

that these smaller services are not inter-dependent and now can be invoked asynchronously.

First of all, the original computational work being offloaded to the server or the utility for r

remains unchanged by this redistribution. However, the combined latency of invoking these

smaller services would decrease, but the consumed client resources would increase due to

multiple invocations, so the resulting cost (or utility/client cost ratio) may not decrease. A

more optimal redistribution in this scenario may be to combine some of these smaller remote

services into one to decrease the resources that the client would consume to invoke them.

Hence, the cost of distribution function is defined as the sum of the normalized execution

latency and client-consumed resources required to invoke a remote service. It is the weight

factor α that normalizes the latency and resource consumption terms.

Problem Solution Outline: We estimate an optimal distribution for a remote service

by minimizing the cost of invoking the service’s constituent functionalities. To that end,
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these functionalities can be invoked individually or in bulk in different combinations. The

following two operations express the required program restructurings:

• [r
′
1, . . . , r

′

k]=partition(r): partitions a remote service r into k independent parts, each

of which becomes an individually invocable remote functionality.

• rh=batch([r0, . . . , rn]): batches n remote functionalities into a larger remote service rh.

Notice that the batch operation may be applied multiple times to different remote services

to achieve the required service combinations. D-GOLDILOCKS implement a divide & conquer

algorithm that by means of partition and batch identifies a distribution that minimizes the

CDist_Exec function.
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Figure 5.2: Restructuring a remote service r into r′ remotely with Client Insourcing

5.1.3 Client Insourcing to Restructure Remote Services

The partition and batch operations work with regular JavaScript functions rather than re-

mote services. Hence, to transform remote services into local functions, we introduce a

domain-specific automated refactoring—Client Insourcing, which given a remote function-

ality invoked via middleware, integrates that functionality with the client code. Client
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Insourcing undoes the current distribution r, thus creating a centralized variant r_local

that can be redistributed differently into r
′ by means of a refactored local version r_local

′

(Figure 5.2).

Section 5.2.1 describes the technical details of Client Insourcing.
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r_local'k

[Redistribution]

partition

(Original Distribution)

Client 
Insourcing

(Re-Distribution)

r'_local1,
…
r'_localk

r
r'k-1 r'k

r'1
…

r'2
…

[Refactoring]:
Partitioning

Figure 5.3: Partitioning remote service r via Client Insourcing

5.1.4 Partitioning Insourced Functions

Based on the ability of Client Insourcing for restructuring, our approach can partition a

remote service into multiple remote parts (Figure 5.3). Assume a remote function r consists

of some distinct functionalities. To identify independently invocable parts, we can perform

Client Insourcing on r, making it a centralized function r_local. Then, we can apply program

analysis and refactoring for centralized apps to split the r_local into k distinct functions

r_local
′
1, · · · , r′_local

′

k. Finally, k distinct functions can be distributed becoming r
′
1, · · · , r

′

k.
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5.1.5 Batching Remote Invocations (BRI)

For networking environments with large bandwidth and high latency, it may be advantageous

to batch multiple remote invocations into a single one to reduce the aggregate latency.

The research literature describes several approaches that implement this optimization. The

Data Transfer Object (DTO) and Remote Façade [29] design patterns aggregate individual

services. Remote Façade exposes multiple fine-grained services via a coarse-grained remote

interface. DTO serves as a bulk object for transferring parameters and results of remote

service invocations. Remote Batch Invocations (RBI) provides language support for creating

DTOs for combining the invocation of arbitrary remote services, which can also be intermixed

with local operations [41].

Our approach batches fine-grained distributions by automatically generating Remote Façades.

First, the small remote functionality is insourced to become local. Then, the resulting inde-

pendent local functions are inlined into a single function using the Inline Function refactoring.

That single function then becomes a new unit of distribution.

remote

local
r_local

r

r_local'1,
…,
r_local'k

(Original Distribution)

Client 
Insourcing

(Re-Distribution)

[r_local'1,r'_local'3]
[r'_local'2 ,..,r'_local'k]

r'2_…k

[[1,3],[2,…k-1,k]]

*
partitions

batch

[Refactoring]:
Partitioning Batching 

Remote Execution

r'1_3

(Generating
Remote 
Façade)

[Redistribution]:

Figure 5.4: Partitioning/Batching remote service r

Combining the partition operations, our approach can arbitrarily generate Remote Façades

for k distinct functions r′_local1, · · · , r′_localk. For instance, a subset {r′_local1, r
′_local3}
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are inlined into a single function r′_local1_3, which is then distributed into r′1_3 (Figure 5.4).

In essence, a combination of these automated refactorings creates a distributed execution

that would be similar to the result of implementing the Remote Façade optimization by

hand.

5.2 Reference Implementation: D-GOLDILOCKS

We concretely realized our approach as a series of automated refactorings. These refactorings

both migrate functionalities between different hosts and also restructure the granularity of

remote service invocations.

5.2.1 Client Insourcing Refactoring

Client Insourcing is a domain-specific1 refactoring that automatically integrates a remote

functionality with the client code. Because our application domain is JavaScript applications,

and JavaScript is known to defeat static analysis techniques, Client Insourcing includes

a dynamic analysis phase to identify the exact boundaries of the server functionality to

insource. The programmer is only required to annotate the invocation points of the remote

functionality to insource. These points correspond to the locations in the client code, at

which remote invocation parameters are serialized to be transferred across the network, and

the remote service’s results are unserialized to be used in the subsequent program steps.

Intuitively, Client Insourcing identifies serialization/unserialization points in the client code

is to detect the entry/exit execution points of the remote functionality to insource. To that

end, Client Insourcing extracts the passed parameters and the return results in the recorded

HTTP traffics.
1its application domain are full-stack JavaScript applications



5.2. REFERENCE IMPLEMENTATION: D-GOLDILOCKS 69

Algorithm 1 Generating Centralized Variant
Client_Insourcing (Csrc, Ssrc) Input : Csrc:client code, Ssrc:server code
Output: Cinsourced

src : Centralized App for Csrc

Sn_src=normalize(Ssrc) /* add Instrumenting code(Jalangi2/JS code) */
[Cinst

src ,Sinst
n_src]=addInstrument(Csrc,Sn_src) /* Instrumenting the entry and exit points */

Log=remoteExecution(Cinst
src , Cinst

n_src) /* Loading JavaScript program rules */
Rulenodejs=loadNodejsProgramRules() /* Generate facts for server code */
FactSsrc=genProgramFact(Sn_src)
ModelSsrc = Rulenodejs + FactSn_src /* Check dependency for candidate points */
/* Query dep. stmts for entry/exit */
Stmtsentry=queryDepStmt(Log.Pentry,ModelSsrc)
Stmtsexit=queryDepStmt(Log.Pexit,ModelSsrc) /* Cutting dependent JS statements */
Stmtsdep=Stmtsexit − Stmtsentry /* Make a regular ftn with adaptation */
flocal=compGen(Stmtsdep, Log.(Pentry, Pexit)) /* Add the flocal with Logged Position */
Cinsourced

src =compAdder(flocal,Log.pos,Csrc) /* Return insourced version of Csrc */
return Cinsourced

src

As introduced in Chapter 3, the design Client Insourcing of follows that of other declarative

program analysis frameworks [54, 59, 96] that analyze JavaScript using the z3 SMT solver.

To analyze server code written by means of the Node.js framework, Client Insourcing defines

its own sets of z3 rules for Node.js and that of facts for subject programs. The profiled

parameters and return results are added as new z3 facts to be able to reason about the

entry and exit points of the remote execution. Client Insourcing generates local functions by

solving constraint problems with z3. First, Client Insourcing checks the dependency between

the entry and exit point candidates to locate the correct pair of points. Next, it finds a subset

of dependent statements for the exit point in the server part and the subset of the dependent

statements from the entry point. Client Insourcing generates local functions by differencing

the entry and exit sets. Finally, the generated functions change the call structure of the client

code into regular local calls by using the recorded insertion points. Algorithm ?? shows the

overall refactoring procedure.
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//original Client:app.js
$scope.getLadyWithPetDog = function()

{...
$http.get('/api/ladypet')
.then(function(resp){

var text = resp.data; ...
});/*remote invocation*/}

//original Server:server.js
function getSenAvg(array){...};
function getVoca(str){...};
...
app.get('/api/ladypet',

function(req, res){...});

//after Client Insourcing:app.js
//Insourced remote functions
function getSenAvg(array){...};
function getVoca(str){...};
...
function ladypet_local(){
//invoke every subtasks
...};
$scope.getLadyWithPetDog = function()

{...
//from remote to local
var text = ladypet_local();

...}

Figure 5.5: Redistribution Step I: Client Insourcing of Bookworm

5.2.2 Partitioning a Function into Individually Invoked Functions

To partition a JavaScript function into individually invoked functions, D-GOLDILOCKS first

applies static analysis to determine the dependencies of the function-to-partition. These de-

pendencies comprise all references to global references and the invocations of other functions.

To that end, D-GOLDILOCKS traverses the function’s control-flow graph2 in the depth-first

order. Then a greedy algorithm is applied to determine the maximum number of partitions,

each of which is an independently invocable function. The algorithm strives to produce the

highest number of candidate partitions, with the following exceptions: 1) mutually depen-

dent partitions as indicated by the original function’s call graph or 2) partitions that share

global variables. Such candidate partitions are merged into a single one.

2https://github.com/wala/JS_WALA
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5.2.3 Batching Remote Invocations

D-GOLDILOCKS automatically generates a client-side DTO and remote Façade stubs for batch-

ing the small remote services. The actual Remote Façade function, invoking the original

services, becomes the new entry point of the remote execution. The client DTO stub accu-

mulates the remote invocations of the fine-grained services at the client before transferring

them in bulk to the remote Façade function; the BATCH_PARAMETER parameter to the batch

specification becomes the number of service invocations to accumulate. The remote Façade

function sequentially (or synchronously) invokes the bundled services and returns their ex-

ecution results combined into a single value in bulk. For the following specification, D-

GOLDILOCKS generates a remote Façade f1name_f2name with the concatenated function names

of the original fine-grained services f1name and f2name (Figure 5.6).

Client
DTO

f1_f2_f3

Remote 
Façade
f1_f2_f3

f1_f2_f3.f1(p1)

f1_f2_f3.f2(p1)

f1_f2_f3.f3(p2)
DTO_script

f1_f2_f3client(p1,p2, p3) f1_f2_f3server(p1,p2, p3)
R_URI:port/f1_f2_f3

f1(p1)

f2(p1)

f3(p2)

Figure 5.6: Batching Invocation of f1,f2, and f3 by means of Client DTO and Remote Façade

//after Redistribution: www/index.html
<!DOCTYPE html>
<script src="./app.js"> ...
ClientDTO.batch_param = BATCH_PARAMEMTER;
//Batched Invocations:
getSentenceAvg = ClientDTO(getSentenceAvg);
getVocabularies = ClientDTO(getVocabularies); ...
</script>

Figure 5.7: Redistribution Step II: Batching Insourced Functionality
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5.2.4 Redistribution Steps

The three code snippets in Figure 5.5 show the original client and server parts, their cen-

tralized insourced version, and a redistributed client part.

Client Insourcing automatically transforms a client server distributed interaction into a cen-

tralized counterpart, moving server functions to the client and replacing all middleware invo-

cations with local function calls. When insourcing a remote functionality, all its dependent

server-side code has to be copied to the client. That code may be scattered around multiple

functions and standalone declarations. Each insourced remote functionality is placed in a

single function, added to the client codebase. Client Insourcing is similar to the Extract

Function refactoring. Both refactorings create a newly named function and the call sites to

invoke it. Client Insourcing differs in moving the extracted code from the server to the client

and replacing middleware functionality with local calls. The middle column of Figure 5.5

shows the centralized variant produced by Client Insourcing the code in the left column.

This centralized variant is used for profiling and redistribution. In this example, two of

the original server functions are batched into a single function, invoked in the same remote

roundtrip. The batching operation is implemented via the Data Transfer Object (DTO)

pattern on the client and the Façade pattern on the server.

Client 
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Figure 5.8: Process for D-GOLDILOCKS
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5.2.5 Distribution Framework: Transforming Local Functions into

Remote Services

D-GOLDILOCKS implements a framework for seamlessly transforming local JavaScript func-

tions into remote services. D-GOLDILOCKS maintains a list of local (insourced) functions

that implement the business requirements. D-GOLDILOCKS uses the mustache.js framework3

to generate different client/server combinations of the insourced functions. The resulting

client and server parts communicate with each other by means of Ajax and the Express.js

middleware, as the majority of our subject apps already use this middleware. For the server

to explicitly handle concurrent executions, it is enhanced with a multi-core engine4 for the

node.js. These frameworks introduce the required distribution with minimal changes. The

newly redistributed functions only need to unmarshal their parameters and marshal their

results.

Figure 5.8 shows our overall automated refactoring approach.

5.3 Evaluation

Our evaluation seeks answers to the following questions:

• RQ1:—Value: How much programmer effort is saved by D-GOLDILOCKS’s automatic

redistribution operations?

• RQ2:—Cost Model Correctness: How applying the partition and batch operations

affect the distributed execution’s “latency” and “consumed resources” attributes?

3https://github.com/janl/mustache.js
4http://learnboost.github.io/cluster
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• RQ3:—Utility of Cost Model for Redistribution: How useful is the cost function

for guiding redistribution decisions?

• RQ4:—Energy Consumption: What is the effect of redistribution on the amount

of energy consumed by the client?

5.3.1 Evaluation Setup

Dataset

Our evaluation subjects are real-world full stack distributed mobile JavaScript applications

and benchmarks from the extremeJS [104]. extremeJS built remote services over their dis-

tributing framework focusing on JavaScript offloading. We tested their remote functionalities

only changing the server middleware from their distributing framework (V8 within a C++

app) into Express.js.

Latency and CPU Utilization of Remote Services

We profile remote services under standard loads in terms of the latency and resources for

the client. We use a V8 profiler5, which supports the line-by-line performance profiling of

JavaScript programs. D-GOLDILOCKS injects probes into the instrumented source code and

collects samples, which contain the execution times (L in Table 5.1) and CPU utilization

levels for each block. By summing these CPU levels, We calculate the resource consumed

by a remote execution (
∑

Tcpu in Table 5.1). Computationally intensive benchmarks with

remote functionalities always exhibit a high latency. We ran our measurements over headless

5https://github.com/node-inspector/v8-profiler
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browser testing frameworks67 to emulate a real world’s web client applications. The remote

server is hosted by DELL-OPTIPLEX5050 and the client execute remote services within the

same machine.

Table 5.1: Subject Remote Services for Evaluating D-GOLDILOCKS

Remote Ser L(ms)
∑

Tcpu fLOC
CI f ind

sub (fdecl) |D|
/api/ladypet 77.38 337 394 8(9) 1.6M
/api/thedea 164.62 695 394 8(9) 1.6M
/api/thered 42.96 370 394 8(9) 1.6M
/api/thegift 37.69 390 394 8(9) 1.6M
/api/bigtrip 42.11 304 394 8(9) 1.6M
/api/offshore 30.82 400 394 8(9) 1.6M
/api/wallppr 56.2 396 394 8(9) 1.6M
/api/thecask 20.6 432 394 8(9) 1.6M
/string-fsta 29.85 328 38 2(5) 76
/cflow-rec 35.43 326 49 3(4) 245
/pprty/brkrs 20.64 323 379 3(3) 1.5K
/pprty/brkrId 15.62 332 382 3(3) 1.5K

5.3.2 Evaluating Software Engineering Value

Programmer Effort Saved

To answer RQ1, we estimate the value of D-GOLDILOCKS automatically generating JavaScript

code. As an automated refactoring, Client Insourcing saves programmer effort required to

move remote functionality to the client, so it can be invoked via local function calls. We

count the number of uncommented lines of JavaScript code (LOC) that need to be edited by

hand to perform the refactoring. Notice that Client Insourcing transformations involve two

phases: generating local functions and replacing middleware invocations with local calls. The

local functions are generated by copying the server-side code, which becomes the body of new
6https://github.com/GoogleChrome/puppeteer
7https://github.com/jsdom/jsdom
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Figure 5.9: Latency(ms) versus the number of Remote Invocations

client-side functions, whose parameters and returns values are automatically inferred from

the corresponding server entry/exit points (fLOC
CI ). The original middleware functionality

is replaced with local calls. For instance, Client Insourcing the /api/ladypet remote service

generates a local function of 394 ULOCs. fdecl is the number of function declaration for

fLOC
CI , originally all these sub functions are grouped together in the remote execution. An-

other D-GOLDILOCKS’s operation is partitioning an insourced function fLOC_CI into smaller

individually invoked functions fLOC
CI_1, ..., f

LOC
CI_n. For each subject, we report the number of

the resulting functions f ind
sub , where f ind

sub ≤ fdecl. The final D-GOLDILOCKS’s operation is batch-

ing individually invoked functions into a larger function. To be able to determine what the

optimal combination of function is, D-GOLDILOCKS generates all possible combinations of in-

dividually invoked functions. Hence,we estimate the saved manual programming effort, |D|,

as the product of fLOC
CI and all possible combinations of f ind

sub . Because of the combinatorial
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explosion, the values of |D| tend to be too large for any reasonable manual treatment. For

example, |D| for /api/ladypet is 394× 4, 139 ∼= 1.6× 106 ULOCs.
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Figure 5.10: Scales between Latency and CPU Usage

Refactoring Impact

D-GOLDILOCKS redistributes a remote functionality by insourcing it, partitioning it into parts,

and batching these parts into new individually invoked remote functionalities. In this ex-

periment, we assess the actual performance impact of the number of batched parts on the

resulting invocation latency and consumed resource (RQ2). Figures 5.9 and 5.10 show the

observed metrics for our experimental subject applications. The larger the number of new re-

mote functionalities, the smaller is the aggregate average latency incurred by invoking them.

The latency drops precipitously as the number of functionalities start growing, but than flat-

tens due to the additional overhead of multiple remote invocations. Whereas, the overhead

or the CPU usage proportionally increases with the number of new remote functionalities.

Utility of Redistribution Cost Model

To answer RQ3, we applied our cost function to different redistribution scenarios of our sub-

jects. We empirically determined the required normalizing factor for the latency(milliseconds)
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Figure 5.11: Cost Functions versus the number of Remote Invocations

and sum of CPU usages terms by scaling the observed latency/CPU usage ratios across all

measurements (See Figure 5.10).

CDist_Exec(ri) = α · L(ri) + (1− α) ·
∑

Tcpu(ri)

, where α = L/ΣTcpu = 0.9281.

Splitting a singe long-running remote function into a small number of asynchronously invoked

parts decreases both the aggregate latency and cost. However, as the number of partitions

grows, so does the cost, due to the increasing overhead of invoking multiple remote functions

(Figure 5.11).

Figure 5.12 shows how two the optimal distributions of /api/theread and /api/thegift bring

the distributed execution cost down to the minimums. Recall that the task of getting unique
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vocabulary (getVocabulary) was relatively computationally intensive, as compared to other

tasks.

The optimal distribution comprises three individually invoked remote services, extracted

by partitioning getVocabulary into smallest possible functions and then batching them to

minimize the aggregate latency and CPU utilization.

5.3.3 Evaluating Performance and Energy Consumption

To answer RQ4, we measure the amount of energy consumed by a mobile device to exe-

cute remote services over a stable WiFi network. The client device, QISKIW-L24-HUAWEI,

runs Android Marshmallow, and the remote server is hosted by DELL-OPTIPLEX5050. We

use PowerTutor [110], a model-based energy profiler for mobile apps, to estimate energy

consumption (EC).

We report on the energy amounts consumed in three deployments of the Bookworm applica-

tion: (1) the original distributed execution, ECoriginal_dist, (2) the best distributed execution

achieved via redistribution, ECbest_dist, and (3) the worst distributed execution achieved via

redistribution, ECworst_dist. Figure 5.12 shows the best distribution (2 total remote invoca-

tions). The worst distribution makes 8 remote invocations, while the original version makes

1 remote invocation. As it turns out, the original distribution consumes the lowest amount of

energy, ECoriginal_dist=8.4mJ, with the best distribution not far behind, ECbest_dist=13.4mJ.

The worst distribution is an energy guzzler, consuming 6 times as much energy as the original

version, ECworst_dist=47.4mJ.
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symbol designates this subject’s heavy processing function, whose execution time dominates the
total execution.)

5.4 Discussion

Our experimental results are subject to both internal and external threats to validity. Our

approach also has applicability constraints. We discuss these and other issues in turn next.

5.4.1 Internal Validity

To redistribute our subject applications, we use the Express, JQuery, and Cluster frame-

works. The way these frameworks introduce distribution may certainly affect the perfor-

mance of the resulting distributed applications. By using these frameworks in a black-box

fashion, we have no control over how they implement their remote execution features. Since

our redistribution phase starts from a centralized JavaScript variant, any other distribution

frameworks can be used in place instead, possibly resulting in differently performing dis-

tributed applications. Nevertheless, these differences would be unlikely to change the overall

performance profile of the redistributed applications. As our measurements show, the per-

formance latency of remote invocations is dominated by network communication and the
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server’s computational load. The choice of distribution middleware would have a marginal

impact on the performance of these functionalities.

As our units of distribution, we use existing functions. Another possibility would be to

consider splitting existing functions into smaller units that can be distributed independently.

Measuring the performance of and redistributing code at the level of granularity of existing

functions certainly have impacted our performance results. Nevertheless, in this work we aim

at a fully automatic approach to determining which distribution would be optimal. It would

be impossible to automate the process of breaking up existing functions into meaningful

constituent blocks.

5.4.2 External Validity

D-GOLDILOCKS makes all redistribution decisions based on the obtained performance char-

acteristics of the application, whose remote functionality has been insourced. Our imple-

mentation relies on the V8 profiler to measure the performance of such applications. It

is possible that other profilers could show different performance numbers, thus affecting

D-GOLDILOCKS’s redistribution recommendations. Network connectivity can also affect our

experimental results. All our experiments were conduced over a stable WiFi network con-

nection. Operating over limited unstable networks would incur higher energy consumption

overheads. D-GOLDILOCKS applies a cost function to decide whether a given distribution

needs to be fine-tuned. One may disagree with this heuristic and choose a different one,

particularly well-suited for certain application domains. Even if one completely rejects the

validity of our decision-making heuristic, our overall redistribution approach still has value.

The ability to reshape centralized functionality before redistributing the result is a new

promising approach to optimize the execution of distributed applications.
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5.4.3 Applicability and Limitations

Distributed execution is always a result of certain architectural decisions. D-GOLDILOCKS

makes it possible for developers to revisit these decisions, without resorting to prohibitively

expensive manual code modifications. Instead, D-GOLDILOCKS relies on domain-specific and

general refactoring transformations. Hence, developers who use D-GOLDILOCKS are still re-

quired to understand the original distributed application’s architecture. As is usually the

case, D-GOLDILOCKS eliminates much of the accidental rather than essential complexity of

architecting distributed applications [13].

All our evaluation examples are full-stack JavaScript applications. However, conceptually

our approach is quite general and should be applicable to any distributed application do-

main. However, other domains may require additional engineering effort. Although full-stack

JavaScript applications have become extremely popular, to redistribute JavaScript code to

execution platforms that use a different programming language, one may be able to apply

language-to-language translation, an approach whose success can differ widely depending on

the source and target languages.



Chapter 6

Improving the Responsiveness of Web

apps

Mobile web apps are fundamentally distributed: browser-based clients communicate with

cloud-based servers over the available networks. Distribution assigns an app component to

run either on the client or on the server. Some distribution strategies are predefined; for

example, user interfaces must display on the client. Other distribution strategies aim at

improving performance; for example, a powerful cloud-based server can execute some func-

tionality faster than can a mobile device. Network communication significantly complicates

the device/ cloud performance equation. For a client to execute a cloud-based functionality,

it needs to pass parameters and receive results over the network. Transferring data across

a network imposes latency and energy consumption costs. For low-latency, high-bandwidth

networks, these costs are negligible. For limited networks, these costs can grow rapidly

and unexpectedly. The overhead of network transfer can not only negate the performance

benefits of remote cloud-based execution, but also strain the mobile device’s energy budget.

Operating over limited high-loss networks requires retransmission, which consumes addi-

tional battery power [99]. Hence, fixed distribution can hurt app responsiveness and energy

efficiency.

Changing the locality of a software component can be non-trivial due to the differences in

latency, concurrency, and failure modes between centralized and distributed executions [102].

83
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Researchers and practitioners alike have thoroughly explored the task of rendering local

components remote. Cloud offloading moves local functionalities to execute remotely in the

cloud [9, 47, 92, 104]. Nevertheless, standard offloading is unidirectional: it can only move

a client functionality to run on a server. If mobile web apps are to flexibly adapt to the

ever-changing execution environment of the web, client and server functionalities may need

to adaptively switch places at runtime.

We address this problem by adaptively redistributing the client and server functionalities of

already distributed applications to optimize their performance and energy efficiency. Our

approach works with full-stack JavaScript apps, written entirely (i.e., client and server) in

JavaScript. By dynamically instrumenting and monitoring app execution, our approach

detects when network conditions deteriorate. In response, it moves the JavaScript code,

program state, and SQL statements of a remote service to the client, so the service can be

invoked as a regular local function. To prevent cross-site scripting (XSS) or SQL injection

attacks, the moved code is sandboxed, creating a separate context with reduced privileges for

safe execution in the mobile browser. Thus, the same functionality can be invoked locally or

remotely as determined by the current execution environment. To the best of our knowledge,

our approach is the first one to support bidirectional dynamic redistribution of distributed

mobile web apps. Moreover, to take advantage of our approach, a mobile app needs not be

written against any specific API or be pre-processed prior to execution.

We called the reference implementation of our approach—Communicating Web Vessels (CWV)

—due to its reminiscence of communicating vessels, a physical phenomenon of connected

vessels with dissimilar volumes of liquid reaching an equilibrium. CWV balances mobile

execution by adaptively redistributing functionalities between the server and the client, thus

optimizing app performance for the current execution environment. Our contribution is

three-fold:
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6.1 Approach

We first present a motivating example, then give an overview of CWV, and finally discuss

our performance model.

6.1.1 Motivating Example

Consider Bookworm, an e-reader app for reading books on mobile devices. The app also

provides text analysis features that report various statistical facts about the read books.

The app is distributed: the client hosts the user interface; the server hosts a repository of

available books and a collection of text processing routines. The current architecture of

Bookworm is well-optimized for a typical deployment environment: a resource-constrained

mobile device and a powerful server, connected to each other over a reliable network. For

limited networks, the performance equation can change drastically. Hence, to exhibit the

best performance for all combinations of client and server devices and network connections,

the app would have to be distributed in a variety of versions. Even if developers were

willing to expend a high programming effort to produce and maintain all these versions,

network conditions can change rapidly while the app is in operation, necessitating a different

client/server decomposition. Clearly, achieving optimal performance under these conditions

would require dynamic adaptation.

Our framework, CWV, can adapt Bookworm, so its remote text processing routines could

migrate to the client at runtime for execution. CWV monitors the network conditions,

migrating server-side functions to the client and reverting the execution back to the server,

as determined by the network conditions. The app can start executing with all the text

processing routines running on the server. Once the network connection deteriorates, a

portion of these routines would be transferred over the network to the client, so they could



86 CHAPTER 6. IMPROVING THE RESPONSIVENESS OF WEB APPS

execute locally. CWV’s static and dynamic analyses determine the dependencies across server

functions and their individual computational footprints. This information parameterizes

CWV’s performance model, which determines which part of server functionality needs to

migrate to the client under the current network conditions.

CWV
Enhancement

offloading
offloading

Client
Server

tranferNextPart

offloading

revert

insourceClient Server
Client

Server

Client
Server

Full-Stack App

/serv_r
(remote)

fr
(local)

(Network Condition)

Figure 6.1: Conceptual View of Communicating Web Vessels (CWV)

6.1.2 Approach: Communicating Web Vessels

To optimize the performance of mobile web apps for the current network conditions, CWV

continuously applies the two operations depicted in Fig. 6.1:

1. fr = insource(/service_r): The client requests that the server transfer the remote

functionality(/service_r)’s partition fr to the client.

2. revert(fr): The client stops locally invoking the insourced partition fr, and starts

remotely invoking its original server version /service_r.

6.1.3 Reasoning about Responsiveness

Responsiveness is a subjective criteria: application is responsive if the user perceives the time

taken to execute app functionalities as “short”. For this reason, we define the responsiveness
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of a remote execution as the total execution time that elapses between the client invoking

a remote functionality and the results presented to the user. We define the response time

of a remote functionality fr as RT (fr). The RT (fr) mainly depends on the “server speed”

and “network speed” parameters. We simplify the responsiveness of fr by means of the

execution time fr on the server Tserver(fr) and the remaining remote execution overheads.

The resulting Round Trip Time (RTT) is highly affected by the current network conditions.

To estimate the network conditions, CWV utilizes the RTT net metrics, detailed in Section

6.2.3.

RT (fr) =


Tserver(fr) +RTT net remote exec.,

Tclient(fr) local exec.
(6.1)

If fr is executed locally, the responsiveness becomes the execution time fr on the client

Tclient(fr).

6.2 Reference Implementation

To move a server-side functionality to the client at runtime, one has to migrate both the

relevant source code and program state, which has to be captured and restored at the client.

JavaScript has a powerful facility, the eval function, which executes a JavaScript program

passed to it as a string argument. One could simply duplicate the entire server-side code and

its state, passing them to a client-side eval. However, such a naïve approach would incur

unacceptably high performance and security costs. Hence, our approach applies advanced

program analysis and automated transformation techniques to minimize the amount of code

to be transferred to and executed by the client (Sections 6.2.1 and 6.2.2). Furthermore, our
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approach establishes an efficient protocol for the transformed app to switch between different

execution modes (Section 6.2.3), transferring the relevant code correctly and safely (Sections

6.2.5 and 6.2.6).

6.2.1 Analyzing Full-Stack JavaScript App

Server code comprises business logic and middleware libraries. The server-side business logic

can include database access routines. The portion that needs to be insourced is business logic

only. In other words, business logic must be reliably separated from all middleware-related

functionality. To that end, CWV identifies the entry and exit statements of the business

logic portion and then extracts all the code executed between these statements, converting

that code to a new regular JavaScript function. All the dependent code of this new function

is also extracted and transferred, thus producing a self-sufficient execution unit.

The specific steps are as follows. First, CWV normalizes the server code to facilitate the

process of separating its business logic from middleware functionality. Then, CWV locates

the statements that “unmarshal” the client parameters and “marshal” the result of executing

the business logic. CWV automatically identifies these statements by capturing the client

server HTTP traffic and instrumenting code at the server and at the client (Fig. 6.2-(a)). To

that end, CWV uses Jalangi [86], a state-of-the-art dynamic analyzer for JavaScript. CWV

modifies the built-in Jalangi’s callback API calls to be able to detect the events that corre-

spond to the “unmarshal/marshal” statements. By following these steps, CWV identifies the

specific lines of code and variables that correspond to the entry and exit points of remote

invocations, both at the server and the client.

The statements executed between these points comprise the server-side business logic and its

dependent program states that may need to be moved to the client at runtime. To identify
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Figure 6.2: Automated Program Transformation for enabling CWV

a subset of statements that satisfies a pair of entry/exit statements, CWV follows a strategy

similar to that of other declarative program analysis frameworks that analyze JavaScript

code by means of a datalog engine [5, 96]. CWV encodes the declarative facts that specify

the behavior of JavaScript statements of server program: 1) declarations of variables/func-

tions, 2) their read/writes operations, and 3) control flow graphs. The dependency analysis

query constructs a dependency graph between statements. Then, CWV solves constraints

describing these points with the z3 engine [19] and then extracts them into a CWV-specific

object that is movable between vessels (Fig. 6.2-(b)).

Some server-side program statements use third-party APIs, whose libraries and frameworks

are deployed only at the server. CWV provides domain-specific handling of the statements

that interact with relational databases. In particular, some statements interacting with a

server-side relational database cannot be directly migrated to the client. As a specific ex-

ample, consider the statement mysql_server.query(SQL_STATES), which queries the server-side

MySQL database engine. Mobile clients can also use relational databases, but of a different

type, a browser-hosted SQL engine. Hence, the database-related statement above should
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be replaced with a_mobile_engine(SQL_STATES). To identify such database-related statements,

CWV instruments all function invocations whose arguments are SQL commands by using

callback API of Jalangi. Despite the fragility of relying on the usage of SQL commands, our

approach presents a practical solution for supporting domain-specific server-to-client migra-

tions. Finally, CWV transforms the identified entry/exit points at the client and server

sides to insert the CWV functionality with the local and remote vessels respectively that we

explain in the next section (Fig. 6.2-(c)).

6.2.2 Transforming Programs to Enable CWV

CWV enhances application source code to enable its transformation as follows.

Client Enhancements

CWV transforms the identified HTTP invocation in the client program to be able to CWV’s

functionality as follow. The CWV-enabled client can operate and switch between these

two modes: Original and Local. In Original mode, the app operates the original remote

execution and can switch to Local mode by means of Insourcing. The Local mode designates

that the local version of the insourced remote functions is to be invoked and can revert to the

original mode by means of Reverting (See Fig. 6.3). To switch to a mode, the client invokes

fuzzMode(mode) that simply fuzzes a certain parameter of the HTTP command that invokes

the original remote service name. For instance, the client can dynamically fuzz a remote

service "/a_service" (Original Request) into "/a_service?CWVmode=Local" (Local). And the

app initiates the movement of the relevant remote server code and execution states rcwv to

the client by fuzzing the original invocation into "/a_service?CWVmode=Insourcing" (Insourcing

Request).
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Insourcing CWV moves a set of received server statements into a client’s container, referred

to as the local vessel. Initially, the local vessel is empty. When the client device determines

to switch from the Original mode into the Local mode, the app issues the Insourcing Request

and then invokes the moveToLocalVessel(rcwv) call, only then adding received server code and

state to the local vessel. The client and server share all the referenced names for global

entries added to the local vessels. To that end, CWV also adds a special-purpose global

object for the client, lcwv. This object is used for storing functions and other JavaScript

objects received from the server1. Finally, the app fuzzes the HTTP command into Local

"CWVmode=Local" to change the current mode. After that, invoking the rebalance() function

compares the local replica’s execution time with that of its original remote version.

Reverting If the local execution stops being advantageous, the app with Local mode reverts

to Original mode and clears the local vessel with clearLocalVessel(), overriding the local

vessel into the empty function again. And then, the app switches the mode by fuzzing

HTTP command into the original mode.

Server Enhancements

In a CWV-enabled app, the server part can operate in one of three modes to respond the

client’s requests: Original, Insourcing, and Local. With the detected entry/exit points of a

remote functionality, CWV transforms it to be able to detect the mode switching queries and

switch to the client-requested modes. The Original mode refers to the original unmodified

execution, with the exception for the profiling of the time taken to execute the program

statements that implement business logic Tserver(fr) of the Equation (6.1). The client uses

resulting performance profiles to ascertain the current network conditions RTT net from the

measured response time RT (fr). And Tserver(fr) will be used to determine a threshold when
1The properties of lcwv are the same as of the remote object rcwv
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to switch modes.

In the Insourcing mode, the server responds to the client’s special insourcing query by

serializing the relevant portions of a given remote functionality into a JSON string. To

that end, CWV calls saveSnapshot(fr), whose invocation creates a snapshot of the remote

functionality fr. CWV adds to the server part a special-purpose global object, rcwv, which

represents a remote vessel. This object’s properties contain the extracted functions,

rcwv.main, rcwv.ftns[0], · · · , rcwv.ftns[k] (6.2)

and their corresponding saved states for global variables

rcwv.gvars[0], · · · , rcwv.gvars[l]. (6.3)

To migrate fr with database dependent statements, CWV takes a snapshot of database’s

table in terms of SQL commands to enable restoration in the client

rcwv.sql[0], · · · , rcwv.sql[m]. (6.4)

To implement saveSnapshot(fr), CWV instruments 1) the declarations of global variables

and 2) Call Expressions of embedded SQL statements extracted by the constraints solving

phrase. Finally, in the Local mode, the server executes no business logic, but responds

to periodic pings from the client. Based on the roundtrip time of these pings, the client

monitors the network conditions to detect if the Local mode execution no longer provides

any performance advantages and then switches the app to the Original mode.
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6.2.3 Updating Modes and Cutoff Latency

The transition diagram in Fig. 6.3 shows how an app can transition between different modes.

CWV-enabled client always starts in the Original mode. An insourcing request issued in the

Original mode can be either fulfilled (i.e., switching to the Local mode) or declined (i.e.,

continuing to execute remotely in the Original mode), with the latter incurring a large

performance overhead. To avoid this overhead, the system determines the optimal time

window for issuing “Insourcing Request” as soon as the app is automatically initialized with

a couple of original executions. The procedure that determines the window is as follows.

First, the client profiles both RT (fr) and Tserver(fr) by means of multiple “Original Requests”

during the initialization (Section 6.2.2). After that, the procedure invokes the “Insourcing

Request” and extrapolates how much time it would take to execute the same business logic

locally Tclient(fr).

Estimating Network Delay

CWV-enabled mobile clients continuously monitor the underlying network conditions. The

client collects the RTT net
raw metric that represents raw network delay. Specifically, the client is

continuously monitoring the RTT net
raw by subtracting T (fr) from RT (fr), which are obtained

from the server. Since the raw roundtrip is subject to sudden spikes [43], CWV filters out such

temporary fluctuations by applying an adaptive filter [66], which calculates the covariance

matrices and noise values for RTT net
raw and then estimates the RTT net metric in Equation

(6.1).

In particular, CWV uses an adaptive filter, which repeatedly calculates the covariance ma-

trices for the RTT and noise values. To provide the adaptive filter for CWV, we created a

WebAssembly module (wasm) that encapsulates a third-party implementation of this filter in
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the Go language. This wasm module exposes function estimateRTT, which is continuously in-

voked by the mobile browser, with the wasm mechanism ensuring a low invocation overhead.

See Figure 6.3 for the logic that determines how frequently this function is invoked.

RTTnet <CutOff RTTnet > CutOff

(ACTION)
(CONDITION)

!CutOff ||RTTnet > CutOff

RTTnet < CutOff

fuzzMode(ORIGIN)

fuzzMode(LOCAL)

(init)

codeserver = insourcingREQ()
moveToLocalVessel(codeserver)
CutOffNEW = rebalance()
CutOffNEW = setMargin(ORIGIN)

clearLocalVessel()
CutOffNEW = setMargin(LOCAL)

RTTnet

= estimateRTT()

Reverting

InsourcingLOCAL&& RTTnet <CutOff

Original Insourcing
/Reverting Local

RTTnet

= estimateRTT()

ORGIN && RTTnet
> CutOff

Figure 6.3: Transition Diagram for CWV-enabled Client

Cutoff network latency

The resulting difference between the local and remote execution times is used as the threshold

that determines when switching to the Local mode would become advantageous from the

performance standpoint. In other words, the difference value is compared with the overhead

of network communication, and when the latter starts exceeding the former, the app switches

to the Local mode. We define this network condition as cutoff network latency, τNET
cutoff . Thus,

a CWV-enabled app obtains this threshold as soon as it start executing, and then stays in the

Original mode until reaching the cutoff. Then, it tries switching to the Local mode. Because

this request is executed only upon reaching the cutoff, it is more likely to be fulfilled as



6.2. REFERENCE IMPLEMENTATION 95

offering better performance.

Since switching between modes incurs communication and processing costs, frequent switch-

ing in response to insignificant network changes should be prevented. To that end, the

margin parameter expresses by how much the network conditions need to change and re-

main changed. The algorithm in Algorithm 2 explains how the margin and the current

cutoff latency τ
NET (k)
cutoff determine the next cutoff latency τ

NET (k+1)
cutoff . The margin parameter

θ prevents switching in response to insignificant τ
NET (k)
cutoff changes. After switching to the

Local mode, the app periodically pings the network to determine if the current conditions

are advantageous for reverting to the Original remote mode.
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Algorithm 2 Updating Switch Point and Transitioning Mode
Input: raw network delay RTT net

raw, current mode m(k) and current cutoff τNET (k)
cutoff

Output: next cutoff τNET (k+1)
cutoff with a margin and next mode m(k+1)

//Remove spike by adaptive Kalman Filter

RTT net
filtered ← estimateRTT (RTT net

raw)

if RTT net
filtered > τ

NET (k)
cutoff &&m(k) == Origin then

//Profiling the difference for T : rebalance()

τ
NET (k+1)
cutoff ← T server(fr)− T client(fr)

//Set margin to the next cutoff condition

margin← (1− θ) ·RTT net
filtered;

τ
NET (k+1)
cutoff ← min(τ

NET (k+1)
cutoff ,margin)

m(k+1) ← Local

end

if RTT net
filtered < τ

NET (k)
cutoff &&m(k) == Local then

//Set margin to the next cutoff condition

margin← (1 + θ) ·RTT net
filtered

τ
NET (k+1)
cutoff ← max(τ

NET (k)
cutoff ,margin)

m(k+1) ← Origin

end

Moving code before reaching a degraded network

Notice that insourcing cannot be accomplished over a limited network. Hence, the procedure

needs to be initiated when the network conditions start deteriorating, but before they have

reached the point of becoming poor. Since the conditions of a typical mobile network can

fluctuate, going up and down, the insourcing commences when the conditions degrade to a

given threshold, at which it is still possible to transfer the required source code and state
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from the server to the client. After the insourcing, if the conditions deteriorate further, the

execution switches into the local mode; however, if they improve, the insourcing is discarded,

and the execution continues remotely.

Specifically, to detect the network degradation point, the CWV is monitoring successive

increases in RTTs, which are larger than RTTNET
limited, a configurable parameter used to identify

if the network is becoming limited2.

In terms of the actual operations, in the original mode, the app can receive a transmitted

code and state from the server at this network degradation point with Insourcing Request.

However, this transmission is not applied to the local vessel by moveToLocalVessel until the

cutoff point.
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Figure 6.4: Monitoring Network Conditions and Adapting Distribution

2We set its default value to 4 secs, the ping command’s default timeout.
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6.2.4 Estimating Network Delay

CWV-enabled mobile clients continuously monitor the underlying network conditions to de-

termine whether to initiate a redistribution to adapt to the latest changes. To assess network

conditions, the client collects the RTT net
raw metric that represents raw network delay. Specif-

ically, the client is continuously monitoring the RTT net
raw by subtracting T (fr) from RT (fr),

which are obtained from the server.

Since the raw roundtrip is subject to sudden spikes [43], CWV filters out such temporary

fluctuations by applying an adaptive filter [66]. Fig. 6.4 shows how applied filter removes

the confusing noise. Compare the ground truth and CWV’s switches, both the filter and the

margin in CWV are important to ascertain the major trends in the changes of network delay.

6.2.5 Synchronizing States

Some remote services can be invoked by means of HTTP POST, PUT, DELETE, which are

all state-modifying operations. Invoking an insourced stateful remote service locally modifies

its state, which must be synchronized with its original remote version via some consistency

protocol.

Mobile apps are operated in volatile environments, in which mobile devices become tem-

porarily disconnected from the cloud server. To accommodate such volatility, CWV’s syn-

chronization is based on a weak consistency model. As an implementation strategy, we

take advantage of a proven weak consistency solution, Conflict-Free Replicated Data Types

(CRDT), which provide a predefined data structure, whose replicas eventually synchronize

their states, as the replicas are being accessed and modified. In CRDTs, the concurrent state

updates can diverge temporarily to eventually converge into the same state, as long as the

replicas manage to exchange their individual modification histories [32].
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Specifically, CWV wraps the replicated ‘database’ and ‘global variables’ of cwv objects into

the ‘CRDT-Table’, and ‘CRDT-JSON’ of CRDT templates3, respectively. To keep track

of changes and resolve conflicts, these CRDT-structures provide the API calls getChanges

and applyChanges. By continuously applying/transmitting the reported changes, the device-

based clients and the cloud-based server maintain their individual modification histories and

exchange them, thus eventually converging to the same state. To that end, the cloud server

periodically sends its state changes on rcwv to each client, while each client starts sending

its state changes on lcwv to the cloud server, as soon as this client reverts to executing

remotely.

6.2.6 Sandboxing Insourced Code

Whenever code needs to be moved across hosts, the move can give rise to vulnerabilities

unless special care is taken. The issue of insourcing JavaScript code from the server to the

client is security sensitive. Server-side code has several privileges that cannot be provided by

mobile browsers. In addition, as it is being transferred, the insourced code can be tempered

with to inject attacks. Finally, the transferred segments of server-side database can be

accessed by a malicious client-side actor. To mitigate these vulnerabilities, the insourced

code is granted the least number of privileges required for it to carry out its functionality.

To that end, we sandbox the insourced code.

Specifically, CWV’s sandboxing is applied to the entire local vessel. The insourced function-

ality has exactly one entry point through which it can be invoked. The sandbox guards the

insourced execution from performing operations that require escalating privileges. Finally,

because the insourced database data cannot be accessed directly, malicious parties would

not be able to exfiltrate it.
3https://github.com/automerge/automerge
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As a specific sandboxing mechanism, we take advantage of iframe, which has become a stan-

dard feature of modern browsers. An iframe creates a new nested browser context, separate

from the global scope. Operating in a separate context precludes any shared state between

the insourced code and the original client-based code. In addition, HTML5 supports the

sandbox attribute to further restrict what iframes are allowed to execute4. It protects the

client from the vulnerability related to client XSS. For instance, a sandboxed iframe is pro-

hibited from accessing window.localStorage[..]. Other sandboxing techniques with advanced

programming techniques also attenuate the capabilities of accessing web components [63, 72].

6.3 Evaluation

Our evaluation seeks answers to the following questions:

• RQ1:—Redistribution Adaptivity for different Devices: How beneficial is CWV’s

redistribution for different mobile devices?

• RQ2:—Redistribution Adaptivity for Networks: How beneficial is CWV’s re-

distribution for different networks?

• RQ3:—Energy Savings: How does CWV’s redistribution affect the energy consump-

tion of mobile devices?

• RQ4:—Overheads: When integrated with mobile apps, what is the impact of CWV

on their performance?

4https://developer.mozilla.org/en-US/docs/Web/HTML/Element/iframe
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6.3.1 Device Choice Impact

Dataset

Our evaluation subjects are 23 remote services of 8 full-stack applications, 5 real-world full-

stack mobile JavaScript applications, and 3 JavaScript distributed system benchmarks [104].

These subject apps use different middleware frameworks to implement their client/server

(tier-1/-2) communication and database (tier-3), with these frameworks being most popular

in the JavaScript ecosystem.

To that end, we searched the results based on combinations of keywords for popular server

and client HTTP middleware frameworks, curated by the community. For server-side key-

words, we used ‘Express’, ‘Restify’, etc., while for client-side keywords we used ‘Ajax’, ‘An-

gular’, etc. Table 6.1 summarizes their names and the number of source files; 4 subject ap-

plications contain database-dependent code. To answer RQ1, we tested how the introduced

network delays affect different devices. At launch time for each device, CWV automatically

calculates the cutoff network latency and applies it when scheduling mode switches to mini-

mize the switching overhead. For example, CWV determined the cutoff network latency for

the remote service “/hbone” as 26ms for device 1 (D1) in Table 6.1, having profiled the exe-

cution time at the server ( Tserver(“/hbone”)) and the client (TD1
client(“/hbone”)) as 14ms and

40ms, respectively. Device 1 is a Qualcomm Snapdragon 616 (8 x 1.5GHz), and Device 2 is

an A8-iphone 6 (2 x 1.4GHz); Device 1 outperforms Device 2. The server is an Intel desktop

(i7-7700 4 x 3.6 GHz). We natively build the subject web apps (JavaScript, html, and CSS)

for iOS and Android by using Apache Cordova, a cross-platform development framework.

Table 6.1 demonstrates that the cutoff latency of Device 2 (τD2
cutoff ) is always larger than that

of Device 1 (τD1
cutoff ).
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Table 6.1: Subject Remote Services for Evaluating CWV

Subject
(# of files)

Remote
Services

τD1
cutoff τD2

cutoff
(msec) (msec)

Bookworm
(729 files)

/ladypet 176ms 421ms
/thedea 1120ms 2332ms
/thered 158ms 424ms
/thegift 97ms 120ms
/bigtrip 146ms 224ms

/offshore 619ms 1528ms
/wallp 146ms 458ms

/thecask 90ms 102ms

DonutShop
(4.9k files)

/Donut 0.66ms 1.54ms
/Donut:id 0.71ms 2.2ms

/Empls 0.55ms 1.33ms
/Empls:id 0.81ms 1.23ms

recipebook
(8k files)

/recipe 0.7ms 1.66ms
/recipe:id 0.68ms 1.1ms
/ingts/:id 0.82ms 2.3ms
/dirs/:id 0.75ms 2.1ms

pstgr-sql
(4k files)

/user 1.33ms 2.71ms
/user:id 1.72ms 2.92ms

chem-rules
2.8k files)

/hbone 26ms 59ms
/molec 131ms 202ms

benchmark in [104] (117 files)
str-fasta /str-fasta 656ms 1424ms

fannk /fannk 2576ms 4982ms
s-norm /s-norm 1896ms 4873ms
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6.3.2 Network Latency Impact

To answer RQ2, we set up a test-bed for evaluating network latency impact (See Fig. 8.2-

(a)). Even though, network latency can be changed by controlling RSSI levels, we change

network conditions explicitly by means of an application-level network emulator5. Then, we

examine how CWV reacts by redistributing the running applications. In these experiments,

the server and the mobile device are connected with a wireless router. We establish a high-

speed wireless link between the router and the device (-55dBm or better). By configuring the

router to different delays, we simulate different network conditions in the increasing order

of delay. Our test-bed has a minimum delay of about 100ms for the simulator’s zero delay.

Therefore, our starting point is 100ms, with the delays increased in the increments of 20m,

50ms, and 100ms, based on the amount of cutoff network latency for each subject. For each

increment, we measure the average delay in the execution of our subject applications (re-

sponse time or responsiveness of a functionality), run in two configurations: (1) the original

unmodified version (Before), (2) dynamically redistributed with CWV version (CWV). Fig.

6.5 shows the performance results (The cutoff equals to τD1
cutoff in Table 6.1).

Across all experimental subjects, the CWV-enabled configuration consistently outperforms

the original version, once the network latency surpasses the cutoff network latency mark.

Once the network delay reaches the cutoff network, the difference in performance starts

increasing by a large margin, as accessing any remote functionality becomes prohibitively

expensive. Before reaching the cutoff network mark, the majority of CWV-enabled apps

and their original version exhibit comparable performance since two versions are operated in

remote execution. When operating over a high-speed network, CWV-enabled apps remain

in the original mode due to the remote execution’s performance advantages. Some subjects

consistently exhibit better performance when executed locally. These subjects with their

5https://github.com/h2non/toxy
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Figure 6.5: Client’s Responsiveness Comparisons
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relatively low utilization of server resources are better off not making any remote invocations,

as the overhead of network delays is not offset by the server’s superior processing capacity.

6.3.3 Energy Consumption

Next, we evaluate how much energy is consumed by a mobile device executing CWV-enabled

and original versions of the same subjects (RQ3). We profile the energy consumption of

Android devices with a Qualcomm’s Trepn-Profiler. We executed each subject 100 times

and collected the profiled results for power (mW). Fig. 8.2 shows the obtained samples of

the power measurements over time. To test the consumed energy under a low speed network

environment, we placed the Android client device far from the wireless router, so the signal

strength level (RSSI) was -75dBm. The resulting energy profiles in Fig. 8.2 show that CWV

always uses more power than the original version despite shortening the execution time.

Remote execution consumes no device power for executing the business logic, even if it takes

much longer for the client to receive the results. By removing the need to communicate

with the server, our approach shortens the overall execution time. Compared to the original

version, our approach improves energy efficiency by as much as from 9.7J to 74J for a poor

network condition. This result is not unexpected, as a large RTT causes longer idle periods

between TCP windows [22]. Even tough, the device switches into the low power mode during

the idle states, the longer execution consumes more energy overall.
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Figure 6.7: Testbed and Consumed Energy

6.3.4 Communication Overhead

To insource server execution, CWV serializes relevant code and state to transfer and repro-

duce at the client. To evaluate the resulting communicating overhead (RQ3), we compared

the amount of network traffic during the regular remote execution for unmodified version

(Trreg) vs. the additional traffic resulting from CWV insourcing server execution (Trcwv).

Among our subjects, the Bookworm app exhibits the largest of Trorig, as this app’s remote

services need to transfer not only the book content but also the statistical information

extracted from that content. Whereas, the med-chem app shows the largest of Trcwv, as CWV
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Subjects Trreg Trcwv naïve
string-fst 0.383 1.3 374.0
fannkuch 0.367 0.99 375.0
spectral-norm 0.386 1.3 375.2
recipe(4)Ψ 0.45 1.1 13100
Bookworm(8) 42.0 15.8 2412
donuts-shop(4) 0.46 1.1 7542
med-charm(2) 21.9 395.1 7542
Average 22.5 54.4 4154

Table 6.2: CWV Overhead for Subjects
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needs to replicate about 10K server-side DB entries. However, the transmitting overhead

is occurred only once at initialization as these services are stateless. The resulting overall

overhead ratio Trcwv

Trreg
turned out to be 2.4 on average for our subjects (Table 6.2).

To quantify the benefits of CWV’s insourcing transferring only the necessary code and state,

we also measured the overhead of the so-called naïve approach, which transfers the entire

server-side code and state to the client. The performance overhead of transferring everything

is about two orders of magnitude slower that CWV’s optimized insourcing, an unacceptable

slowdown for any practical purposes (Fig. 6.8).

Among our subjects, the Bookworm app exhibits the largest of Trorig, as this app’s remote
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services need to transfer not only the book content but also the statistical information

extracted from that content. Whereas, the med-chem app shows the largest of Trcwv, as

CWV needs to replicate all server-side DB entries. However, the transmitting overhead is

occurred only once at initialization as these services are stateless. The resulting overall

overhead ratio Trcwv

Trreg
turned out to be 2.4 on average for our subjects (Fig. 6.8). To quantify

the benefits of CWV’s insourcing transferring only the necessary code and state, we also

measured the overhead of the naïve approach, which transfers the entire server code and

state to the client. The performance overhead of transferring everything is about two orders

of magnitude slower than CWV, an unacceptable slowdown for any practical purposes (Fig.

6.8).

6.4 Discussion

The validity of our evaluation is subject to threats and our approach has certain applicability

limitations.

6.4.1 Threats to Validity

Our evaluation is subject to both internal and external threats to validity that we discuss in

turn next.

Internal Threats

We chose to perform all code analysis and transformation at runtime, even though some of

these tasks could have been performed offline. In other words, we could have transformed the

client code statically by adding to it the remote functions that might need to be executed
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locally. In fact, such static code transformation would allow us to take advantage of the

advanced optimization capabilities of modern JavaScript engines that remove the overhead

of invoking constructors. Nevertheless, we chose to transform the code at runtime for max-

imum flexibility at the cost of performance. One can further optimize our implementation

by replacing dynamic code migration with a separate post-compilation phase. Hence, our

evaluation numbers are reflective of the slowest possible implementation strategy and do not

unfairly characterize the efficiency of our approach.

External Threats

We measure the energy consumption of Android devices with the Snap dragon profiler, whose

estimation procedure is model-based. If we were to use a power monitor instead, our energy

measurements could have differed. Nevertheless, when evaluating energy consumption, our

focus is the difference between the local and remote execution of certain functionalities rather

than their raw energy consumption numbers. Hence, the obtained energy measurements are

sufficient to answer our evaluation questions.

To evaluate how device choice impacts the mode switching points, we used Android and

iOS devices. One could argue that the actual execution environment of clients is a mobile

browser, whose execution is affected mainly by the underlying device’s hardware components

rather than the mobile platform. Indeed, as we have observed, the actual cutoff is heavily

affected by the device’s CPU speed, with the differences stemming from the device’s platform

being quite modest.
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6.4.2 Applicability and Limitations

Our approach’s reference implementation works only with JavaScript source code and SQL

database code. Nevertheless, some mobile web applications are multilingual (i.e., written

in different programming languages and database query languages). Nevertheless, our key

ideas and new technologies can be extended for multilingual distributed applications. As

automatic language translation has been entrenched into modern software development, in-

tegrating mature language translators with our infrastructure is mainly an engineering issue.

Furthermore, full-stack JavaScript applications are starting to dominate the development

landscape of distributed web applications, as their monolingual nature lowers the develop-

ment and maintenance burdens, requiring programming proficiency in only JavaScript, used

across the development stack.

For various reasons, some remote functionalities cannot be insourced to run on the client, thus

making it impossible to create a centralized variant of certain distributed applications. In

those cases in which distribution is inevitable, some application resources, naturally remote

to the rest of the functionality, cannot change their locality. For instance, news readers

display the stories deposited to some centralized repository. It would be impossible to move

the news functionality away from the repository to the client, without manually creating

some mock components that realistically emulate the appearance of news content locally.

In other words, some remote functionalities may depend on resources that cannot be easily

migrated away from their host environment for reasons that include relying on server-specific

APIs or being dependent on some hard-to-move infrastructure components.
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Related Work

The research presented in this dissertation is broadly related to the areas of testing dis-

tributed web applications, program transformation and Synthesis, middleware, Synchroniza-

tion/Replication, and Cloud and Edge Solutions. We next present the most closely related

representatives of related work, comparing and contrasting them with our research.

7.1 Testing Distributed Web applications

Improving various aspects of web application execution has been the target of numerous prior

research efforts. Since our work applies novel software engineering approaches, techniques,

and tools.

Our reference implementation of Client Insourcing, relates to advanced program analysis

techniques for JavaScript, due to its target domain—cross-platform mobile applications. Our

approach follows declarative program analysis frameworks that statically analyze JavaScript

code by means of a constraints solver [36, 54, 59, 96]. The JavaScript language constructs

for programming event-based applications that wait for dispatches events or message asyn-

chronously. Some advanced static analysis approaches apply formal reasoning for callback

and promises of web apps based on a calculus [61, 62]. Existing dynamic analysis tools [54, 86]

have a scalability problem to analyze entire JavaScript program. Dynamic symbolic execu-

tion (DSE) symbolically executes a JavaScript program by applying concrete input val-
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ues [84] for a faster analysis. For more advanced DSE, MultiSE [87] uses a value summary

in Jalangi2 to effectively generate testing input values of a JavaScript program to speed up

dynamic symbolic execution.

In JavaScript, choosing one programming implementation over another can make a significant

difference performance effect on the overall application [33, 34]. An approach presented in

[85] empirically identified reappearing patterns of inefficient JavaScript programs in open

source community, so common performance bottlenecks can be automatically detected and

fixed by using software engineering techniques.

An important part of the debugging process is exercising the runtime behaviour of the

debugged subject. When it comes to testing web applications, client-side scripting and UI

interfacing have been introduced to automatically exercise UI elements and to conduct state-

based testing [46, 65, 68, 69]. These approaches approximate server-side application logic as

simple states. In contrast, Client Insourcing first transforms a distributed application into

its equivalent centralized version, in which the original server-side logic is encapsulated in

regular functions that can be debugged by applying any of these prior approaches.

To debug distributed applications that execute over middleware, Record and Replay(R&R)

is an execution framework that efficiently captures distributed execution traces [2, 77]. One

of the weaknesses of R&R is its heavy performance overhead due to the need to execute in-

strumented code over middleware. To reduce this overhead, Parikshan [7] replicates network

inputs to remove the need for heavyweight instrumentation by using lightweight containers,

thus triggering buggy executions in production with low overhead. By eliminating distribu-

tion altogether, Client Insourcing enables localizing bugs in the centralized equivalent of the

debugging subjects, thereby providing a low-overhead debugging approach.

Since JavaScript defeats static analysis approaches, dynamic analyses have been applied to
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help understand various properties of JavaScript programs, including performance and mem-

ory consumption. MemInsight [44], a profiling framework, can analyze complex JavaScript

programming constructs, the memory behavior of DOM objects, and the exact object life-

times. Dynamic analysis has also been used to identify promising refactoring opportunities

in JavaScript code, such as detecting Just-In-Time(JIT)-unfriendly code sections that can

be restructured to improve performance. To understand how prevalent JIT-unfriendly code

is, JITProf [33] applies dynamic analysis to help developers detect such code regions. To

help identify harmful JavaScript coding practices, DLint [34] features a dynamic checker

based on formal descriptions. To detect performance bottlenecks, JSweeter [107] analyzes

the code patterns related to the type mutation of the V8 engine. Existing dynamic analysis

tools [54, 86] are known to scale poorly to handle whole JavaScript program analysis. In

dynamic symbolic execution(DSE), a program is symbolically executed in place of concrete

input values. MultiSE [87] effectively generates testing input values of a JavaScript pro-

gram. Both of the client-side and the server-side applications operate by using asynchronous

communication throughout the HTTP middleware. Event-based JavaScript programs (i.e.,

callback, promises) have been statically analyzed via formal reasoning based on a calculus

[61, 62].

To detect memory leaks in web applications, BLeak [101], an automated debugging system,

identifies memory leaks by checking for a sustained memory growth between consecutive

executions. Currently, all these approaches need to be applied separately to the server or

client parts of full-stack JavaScript applications. With Client Insourcing, these approaches

becomes immediately applicable for debugging these applications in their insourced versions

that execute within a single JavaScript engine.

Some prior approaches automatically change the locality of execution in existing application,

a highly complex process, as centralized and distributed execution models differ from each
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other in terms of their respective latency, concurrency, and failure modes [102]. Researchers

and practitioners have greatly studied to facilitate the task of rendering local functionalities

remote to take advantage of remote resources. For example, offloading local functionality to

the cloud has also been supported as an automated refactoring technique [40, 48, 49, 103].

7.2 Program Transformation and Synthesis

Client Insourcing can be seen as a variant of program synthesis [10, 24, 25, 26, 27, 28, 38, 90],

an active research area concerned with producing a program that satisfies a given set of

input/output relationships. CodeCarbonReply and Scalpel [9, 92] integrate portions of a

C/C++ program’s source in another C/C++ program by leveraging advanced program

analysis techniques. The programmer’s effort is only limited to annotate the code regions to

integrate, and then the tool automatically adapts the receiving application’s code to work

seamlessly with the moved functionality. Client Insourcing belongs to a category of refactor-

ing transformations that change the locality of application components for various reasons.

One prominent direction in this research is application partitioning, which is an automated

program transformation that transforms a centralized application into its distributed coun-

terpart [9, 57, 58, 92, 98]. Another approach that leverages compiler-based techniques is the

ZØ compiler [30], which automatically partitions CSharp programs into distributed multi-

tier applications by applying scalable zero-knowledge proofs of knowledge, with the goal of

preserving user privacy.
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7.3 Middleware

Several middleware-based approach has been proposed to reduce the costs of invoking remote

functionalities. APE [75] is an annotation based middleware service for continuously-running

mobile (CRM) applications. APE defers remote invocations until some other applications

switch the device’s state to network activation. Similarly, to reduce the overhead of HTTP

communication, events for HTTP requests in Android apps are automatically are bundled

into a single batched network transmission [52, 53]. The e-ADAM middleware [50] optimizes

energy consumption by dynamically changing various aspects of data transmission scheme.

Caching [67] can be particularly beneficial for read-mostly services. If the replicated service

data is simply cached, it can then be accessed with low latency. However, caching may be

inapplicable as a method for replicating certain remote services. In the presence of state

changes, the cached service data can become stale fast. With batching, the proxy server

aggregates multiple client requests to forward a single message containing the aggregated

data to the server, which also returns the results in bulk [17, 42]. A batching proxy can then

reduce the number of WAN transmissions. Batching is most effective in high-bandwidth

networks. However, if the amount of transmitted data saturates the available bandwidth,

batching becomes ineffective.

7.4 Synchronization and Replication

As a fault tolerance technique, State Machine Replication (SMR) synchronizes shared states

them across distributed machines. To achieve strict ordering, SMR follows a consensus

protocol, whose known representative examples include Paxos [51] and Raft [76]. A major

shortcoming of SMR are high performance and network communication overheads, required
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to achieve strong consistency [94]. In contrast, relaxed consistency models incur lower syn-

chronization costs. For this reason, as a consequence, many real-world CRDT-based systems,

including Redis and MongoDB, offer relaxed consistency models. Conflict-Free Replicated

Data Types (CRDT) [88] is a proven solution for relaxed consistency, a CRDT is a prede-

fined data structure, whose replicas’ concurrent updates are eventually synchronized. To

achieve state convergence, CRDTs follow mathematically sound update strategies. Due to

the relaxed consistency semantics, the replicated state is synchronized in a background pro-

cess without interfering with the provisioning of main functionalities [91]. The convergence

of replicas rendered by CRDT is proved by using automated proof assistant frameworks

Isabelle/HOL [32, 32, 45].

7.5 Cloud and Edge Solutions

Ours is not the only approach that moves server-side components and data to the client [18,

82, 90]. Meteor [82], a JavaScript framework, transparently replicates given parts of a server-

side MongoDB database at the client, so these parts can be used for offline operations.

Browserify [3] enables a browser to use modulesin the same way as regular Node.js modules

at the server. WebAssembly [39] provides portable low-level bytecode to execute compo-

nents written in a variety of programming languages in a browser. WebAssembly has been

enhanced with formal type and memory safety guarantees [39, 105]. Servers and browsers

execute code in dissimilar ways and browser-based execution of JavaScript code is typically

slower than server-based execution. RT.js [21] prioritizes the execution of browser-based real-

time jobs within the browser’s event queue, so they meet real-time timeliness constraints.

In modern mobile apps, both the client and server parts may include separate database

engines, used for managing persistent data. However, mobile clients and remote servers typ-



7.5. CLOUD AND EDGE SOLUTIONS 117

ically used different database engines, with dissimilar schemas and query interfaces. Client

Insourcing migrates database-dependent server code to the client, borrowing techniques from

other approaches for migrating databases. Some data reverse engineering techniques explic-

itly reconstruct the database schema [16, 18]. Konure [90] infers both the data types and

SQL commands of apps interfacing with a database by analyzing execution traces using an

active learning approach. Client Insourcing also analyzes database traces, albeit at runtime.

Client Insourcing explicitly replicates all table data by instrumenting the identified SQL

invocations.



Chapter 8

Future Work

The automated software analysis and transformation toolset created by this dissertation

research has a range of applications that can help solve some of the most salient problems

faced by the modern computing ecosystem. In this chapter, we will outline some of possible

future research directions. One of our current research efforts focuses on integrating edge-

based computing and storage resources into existing distributed systems by replicating cloud

services at the edge (Section 8.1).

All reference implementations described in this dissertation are implemented under the as-

sumption that they would be applied to monolingual systems, such as full-stack JavaScript

applications. However, many modern distributed applications are multilingual, with the

client and server parts written in different languages, often quite dissimilar. We describe

some possible future work directions that could extend Client Insourcing to work with such

multilingual systems (Section 8.2).

8.1 Edge Refactoring

Distributed mobile apps take advantage of cloud services to achieve performance and scal-

ability. Consider a mobile app that collects sensor data to train a machine learning (ML)

model. Mobile and IoT devices feature numerous sensors that continuously collect sensor

data. This data is passed as input for training ML models. The app then uses the trained
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models to optimize and specialize its execution. Since training ML models is a computa-

tionally intensive task, the superior and elastic resources of cloud services allow increasing

performance at scale.

However, as the number and variety of mobile and IoT devices have been rapidly increasing,

so has the volumes of the collected sensor data, referred to as sensor data deluge [8, 11].

Due to this development, it is no longer viable to transfer all the collected sensor data to

the cloud for processing. The resulting network transmission bottlenecks would negate all

performance advantages offered by using superior cloud-based computing resources. As a

solution to this problem, edge computing has been explored as an enhancement of traditional

cloud computing. In this distributed architecture, local computing resources at the edge of

the network process much of the collected sensor data, thus avoiding the necessity to transfer

large volumes of data over WANs and the associated performance bottlenecks.

Figure 8.1 depicts the dataflow of a third-party distributed mobile app, firebase-objdet-

node, which is distributed across a mobile client and a cloud server. Specifically, the client

captures images and sends them to the server for processing. The server analyzes the received

images, returning the analysis results back to the client. To that end, the server performs

computationally intensive operations that localize and identify the constituent objects in

the received images, as guided by the pre-trained model of a deep learning framework. The

server then transfers the results to the client, which uses them to draw the boundaries of and

descriptions around the identified objects in the captured images. Assume that the app is

deployed for a mission-critical task, such as security monitoring, so it is essential to achieve

the requisite levels of response latency.

Modern smartphones typically come with 8-16 megapixels cameras. An image captured

with such cameras would typically take between 1 and 20 Mbytes. As images are being

transferred to the cloud-based image processing service, the network’s bandwidth and latency
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Figure 8.1: Motivating Example: firebase-objdet-node

determine the resulting performance. In addition, providers of cloud services can host them

in different geographic regions, not necessarily those co-located with the client. In fact, the

actual geographic of the service can drastically affect the round-trip time (RTT) metric.

To demonstrate this insight, we installed our example app’s remote service on the cloud

infrastructures, located on the same continent and on the nearest neighboring continent.

The RTT across different continents is an order of magnitude larger than within the same

continent. Because the app is mission-critical, experiencing such a slowdown in performance

would cause the app to fail in its mission.

To work around the network bottleneck conditions described above, one can take advantage

of edge computing resources, provided by nearby network-connected computing devices.

Such devices can be accessed in a single hop within the shared local network, but would

offer less processing power than their cloud-based counterparts. In other words, some image

processing can be offloaded to nearby edge devices for processing, so the app would adaptively

take advantage of edge computing resources for certain combinations of processing loads and

RTTs.

To take advantage of edge resources, new applications can be developed from scratch. How-
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ever, a more common scenario is when developers decide to introduce edge processing to

existing cloud applications as a performance optimization. In other words, developers end up

modifying existing cloud-based applications to integrate edge-based processing. In essence,

developers transform two-tier (device-cloud) applications into three-tier (device-edge-cloud)

applications. To transform such an app correctly by hand, so its performance would im-

prove as intended, is non-trivial. Developers first have to understand the app’s distributed

runtime behavior in order to identify those cloud-based functionalities that can benefit from

edge-based processing. Then, developers have to determine whether these functionalities

maintain state and how to keep it consistent once replicated. Finally, developers have to

modify by hand distributed communication protocols, commonly implemented by means of

special frameworks with complex APIs.

Our solution comprises a behavior-preserving automated program transformation, imple-

mented as the EDGE REFACTORING framework. EDGE REFACTORING attaches to a running

client-cloud application and captures its live HTTP traffic between the client and the in-

voked cloud-based services. Based on the captured traffic, EDGE REFACTORING then analyzes

and transforms the original two-tier application to a semantically equivalent three-tier ap-

plication. The transformed application continues delivering the original functionality, but

with improved latency and throughput. The transformation dynamically generates and in-

stantiates a Remote Proxy: the edge node becomes the cloud server’s filtering and processing

proxy, preserving the original service interfaces. As a high level overview, certain function-

ality of a cloud-based services becomes replicated at edge nodes, co-located with clients.

The service states are then synchronized between the cloud and the edge replicas in the

background.

One could simply duplicate the entire server-side functionality at the edge nodes, synchroniz-

ing all of the replicated service state. However, such a naïve approach would incur unaccept-
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Figure 8.2: Edge Refactoring

ably high synchronization costs, so the amount of functionality to transfer to and execute

by the edge replicas must be carefully selected. In addition, failure handling logic may not

be easily transferred from the cloud to the edge, and may require managing complex states.

To allow for easy replication at the edge, the edge replicas handle failures by forwarding the

failed service invocations to the master service copy in the cloud. This scheme reduces the

overheads and complexity of not only handling failure but also of synchronizing states.

8.2 Transitioning from Partial to Full-Stack JS Apps

A growing number of enterprises are increasingly adapting full-stack JavaScript application

as their preferred implementation architecture for web applications. The reasons for why

enterprises find this architecture enticing are quite obvious. Its monolingual nature reduces

the development complexity and costs, making it easier to find qualified developers. That

is, the client and server developers can share the same set of development tools (e.g.. IDEs,

testing frameworks, linters, etc.), so their roles can become more interchangeable. It is also

easier to hire competent developers who are expected to demonstrate proficiency only in

JavaScript and its development infrastructure.

There is great potential benefit in transforming partial-stack JavaScript applications, in



8.2. TRANSITIONING FROM PARTIAL TO FULL-STACK JS APPS 123

which only the client is written in JavaScript, into full-stack JavaScript application to reap

all the aforementioned benefits. However, the transitioning from partial-stack to full-stack

JavaScript applications is a laborious and error-prone undertaking. First, this transition-

ing requires translating the server functionality written in Java to JavaScript. Before this

language-to-language translation can take place, however, the slice of the code that imple-

ments business logic needs to be separated from the middleware API calls for communication

and database, with the business logic and middleware closely intertwined.

1 import service.*;
2 import org.springframework.*;
3 @RestController
4 public class UserController {
5 private final TaskService service;
6 @GetMapping("/task/{taskname}")
7 void List<Task> getTasks(@PathVariable String name){
8 List<Task> tasks = taskService.findByName(name);
9 if (task.length == 0)

10 return ResponseEntity.notFound().build();
11 return tasks;
12 }
13
14 @PutMapping("task/{id}")
15 public void editTask(@RequestBody Task t,

@PathVariable("id") Long id){
16 t.setId(id);
17 tasksRepository.saveAndFlush(t);
18 return ResponseEntity.ok().build();
19 }//business logic
20 }

1 class TaskService extends
JpaRepository<Task,
Long>{

2 Collection<Tasks>
findBytaskname(String
taskname);

3 Collection<Tasks>
findAllCustom();

4 ..}//Query Models

1 ..
2 @Entity//Data Models
3 class Tasks{..}

Figure 8.3: Motivating partial-stack App:TODO-List

Figure 8.3 highlights code snippets for motivating partial-stack application TODO-List, it

comprises of server and client part written Java and JavaScript, respectively. To make a

full-stack app, the server part of the app should be translated by JavaScript with Node.js. By

encapsulating all application concerns related to distributed communication and database,

middleware streamlines the implementation of distributed applications and has become a
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mainstay of modern software development practices. To be specific, the underlined server

middleware framework is the spring framework, which is the most popular for Java devel-

oper's community for over a decade. Java Reflection with annotations is a critical attribute

to simplify its programming models for both of communication behaviors and database table

retrievals in this framework.

Approach1: Transpiling tools

Transpiler uses the source code of a program written in a programming language as its

input and generates a corresponding source code in the identical or a different programming

language. Transpiling frameworks are used for supporting multiple different programming

language platforms and reduce a manual effort of rewriting the source code. To translate

from source to target programming languages, transpiling frameworks manually define the

rules [23, 79, 95, 108] or automatically infer translation rules from the source codes [1, 6, 31].

For an automated transitioning from Java to JavaScript, developers may think of applying

state-of-art transpiling tools. The main problem is that middlewares in multi-tier distributed

programs impede seamless transitions because of the programming model for middleware

completely differs from each other (i.e., Java Reflection). Translations are ended up with

undefined errors for translating mappings between Java and JavaScript. For instance, a

state-of-art transpiler for Java-to-JavaScript, JSweet [79] raises translating errors. However,

transpilation is still valuable since the transpiler can translate other business logic (i.e.,

none-middleware parts) into the target language without manual effort.

Appdist −→ INSOURCING −→
Applocalserver

AppJSclient

−→ TRANSPILER −→ AppJScent−→
Adapting

Enhancing
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Approach2: Universal Virtual Machine

Universal virtual machines enable interoperability between different programming languages

in a shared runtime [100, 106]. Universal virtual machines can be used to obviate the

necessity for source-to-source translation to insource the polyglot programs. Our insourcing

refactoring generates a local variant of the cloud program Applocalserver, where it is written in

Java. Then, the virtual machines can invoke the local function in the browser. To enhance or

adapt the variant, programmers can apply refactoring frameworks to the centralized version

of Java Applocalserver.

Appdist −→ INSOURCING −→
Applocalserver

AppJSclient

−→ UNIVERSIAL VM −→ AppJScent−→
Adapting

Enhancing

GraalVM [106] is a universal virtual machine developed by Oracle Labs. GraalVM supports

communication between polyglot objects through messages API. For another approach for

language interoperability, Protocol Buffers [80] serializes objects across languages and then

shares the data by means of language-independent specification. Polyfills [89] supports

polyglot adapters provide communication for objects of different languages. It also enables

the same code can be executed in different browsers.



Chapter 9

Conclusion

The ever-changing realities of modern distributed apps put new obstacles on the road of

providing a satisfactory user experience. In particular, modern users expect distributed ap-

plications to be responsive, reliable, and energy efficient. Distributed application developers

need powerful approaches, techniques, and tools that allow them to reach these objectives

on time and under budget. This dissertation research innovates in the software engineer-

ing space to create novel automated reengineering approaches that enhance and optimize

distributed execution. In particular, we introduce a novel domain-specific refactoring, sup-

ported by state-of-the-art program analysis and transformation techniques, and apply this

refactoring to address some of the most salient problems of distributed execution. This

research contributes to the development of development approaches, techniques, and tools

with novel designs, new technologies, and strong potential for practical adoption.
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